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Abstract 
Wound care is a crucial element of healthcare management, particularly for patients with chronic conditions like diabetic ulcers, 
pressure sores, or surgical wounds. However, the manual assessment of wound healing is resource-intensive, error-prone, and 
often impractical in remote or underserved regions. This research introduces an Artificial Intelligence (AI)-powered mobile 
application designed to address these challenges by automating the assessment of wound healing stages and providing real-time, 
personalized recovery progress. The primary objectives are to classify wounds based on their healing stage and predict recovery 

http://www.ijcsma.com/


 
 

Kesaraju R. International Journal of Computer Science and Mobile Applications, Vol. 12 Issue 11, 
November-2024, pg. 01-19. 

ISSN: 2321-8363 
Impact Factor: 6.308 

(An Open Accessible, Fully Refereed and Peer Reviewed Journal) 
 

 

©2024, IJCSMA All Rights Reserved, www.ijcsma.com 

 
 

This work is licensed under a Creative Commons Attribution 4.0 International License. 
 
 

timelines using sequential images, thereby improving accessibility and decision-making in wound management. The study 
utilizes Convolutional Neural Networks (CNNs) for image classification and Long Short-Term Memory (LSTM) networks for 
healing trajectory prediction. Using a curated dataset of 2,500 annotated wound images, the proposed models achieve a 
classification accuracy of 92% and a healing progression prediction error of less than 5%. The results indicate that the mobile 
application can provide scalable, efficient, and accessible wound care solutions. Future work includes expanding the dataset to 
enhance model generalization and integrating wearable sensor data for continuous monitoring. This study highlights the potential 
of AI-driven applications to revolutionize healthcare by bridging the gap in medical resources and providing patients with 
actionable insights in real-time. 

Keywords: AI-driven healthcare; Wound healing analysis; Progression tracking; Mobile health applications; 
Scalable healthcare solutions; Healthcare accessibility  

1. Introduction 

The management of wound care remains a critical challenge in healthcare, particularly for individuals with chronic 
wounds, such as diabetic foot ulcers, pressure sores, and post-surgical wounds. These types of wounds often require 
frequent assessment to ensure proper healing and prevent complications. Traditional wound care methods rely 
heavily on manual assessments, which can be subjective and prone to error, particularly in resource-limited settings. 
Furthermore, the increasing global burden of chronic diseases has heightened the need for scalable solutions that can 
provide consistent and accurate monitoring of wound healing. 

The primary aim of this research is to develop an AI-powered mobile application that provides automated, real-time 
assessments of wound healing stages and predicts recovery timelines based on sequential wound images. The 
application leverages Convolutional Neural Networks (CNNs) to classify the severity of the wound and Long Short-
Term Memory (LSTM) networks to predict the healing progression. This mobile application represents a scalable 
solution that could significantly improve wound care, particularly in underserved or remote areas where access to 
medical professionals is limited [1]. 

The effectiveness of the model was evaluated using a dataset of annotated wound images, with results showing high 
classification accuracy and reliable healing predictions. The application was built with the goal of making it 
accessible on mobile devices, ensuring ease of use and widespread adoption. The significance of this work lies in its 
potential to enhance healthcare delivery by providing patients and healthcare professionals with accurate, real-time 
insights into wound care, thus enabling timely interventions and improving patient outcomes. 

2. Background 

2.1. The Complexity of Wound Healing 

Wound healing is a multifaceted biological process aimed at restoring the integrity and function of injured tissue. It 
proceeds through four overlapping and dynamic stages: 
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2.1.1. Hemostasis: Occurs immediately after injury, where vascular constriction and clot formation prevent blood 
loss. Platelet activation also releases growth factors that initiate the healing process. 

2.1.2. Inflammation: This stage is characterized by immune cell infiltration, including neutrophils and 
macrophages, which work to clear debris and combat infection. Redness, swelling, and pain are common 
visual markers of this phase. 

2.1.3. Proliferation: In this stage, fibroblasts and endothelial cells promote tissue regeneration by producing 
collagen and forming granulation tissue. Angiogenesis (new blood vessel formation) and epithelial cell 
migration are critical for covering the wound bed. 

2.1.4. Remodeling: Also known as the maturation phase, this involves the reorganization of collagen fibers and 
strengthening of the newly formed tissue, reducing scar visibility over time. 

Each of these stages exhibits unique visual and textural features, such as changes in size, depth, and coloration, 
which can be systematically analyzed to assess healing progression. Variability in healing rates is influenced by 
factors such as patient health, comorbidities (e.g., diabetes), wound type, and environmental conditions, 
underscoring the need for consistent and objective evaluation methods. 

3. Current Strategies for Wound Healing Assessment  

3.1. Traditional Methods 

Historically, the assessment of wound healing has relied on clinical evaluations, which involve visual inspection and 
manual measurements by healthcare professionals. While effective in controlled settings, these methods are 
inherently subjective, with outcomes influenced by the clinician's expertise and experience. Moreover, the process is 
time-consuming, requiring frequent follow-ups, and it is resource-intensive, limiting its scalability in low-resource 
settings or rural areas. 

Standardized tools like the Bates-Jensen Wound Assessment Tool (BWAT) and Pressure Ulcer Scale for Healing 
(PUSH) attempt to provide structure to wound evaluation. However, they remain limited by the variability of human 
interpretation, particularly when distinguishing between subtle changes in tissue composition or inflammation 
levels. 

3.2. AI and Medical Imaging Innovations 

Advancements in medical imaging and Artificial Intelligence (AI) are paving the way for more objective and 
automated approaches to wound assessment. AI-driven systems leverage imaging technologies such as digital 
photography and thermography, combined with powerful algorithms, to quantify wound characteristics. Key 
innovations include: 

• Computer Vision: AI models use computer vision to analyze wound features such as size, edge 
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irregularities, tissue types, and color gradients. 

• Tissue Segmentation: AI tools can segment wound images to identify necrotic tissue, granulation tissue, 
and epithelial coverage, providing granular insights into healing stages. 

These AI-based methodologies reduce inter-clinician variability, ensure consistency, and enable rapid analysis, 
especially in telemedicine applications. 

4. AI Models for Wound Classification and Healing Prediction 

4.1. Applications of CNNS in Medical Imaging 

Convolutional Neural Networks (CNNs) have emerged as the backbone of modern medical imaging solutions due to 
their ability to automatically extract hierarchical features from image data. In wound care, CNNs are widely used to 
classify wounds based on their healing stages by identifying visual patterns such as tissue color, texture, and 
vascularization. Unlike traditional image analysis, which requires handcrafted features, CNNs learn directly from 
raw pixel data, enabling superior performance in complex datasets [2]. 

For instance, CNNs have been employed to classify wounds into categories such as: 

• Inflammatory (e.g., wounds with redness and swelling), 

• Proliferative (e.g., wounds with granulation tissue), and 

• Chronic or Stalled (e.g., wounds showing signs of infection or necrosis). 

Several studies report classification accuracies exceeding 90%, showcasing the promise of CNNs in automating 
wound assessment. 

4.2. Predictive Modeling with Hybrid Approaches 

Deep learning models are not limited to static classification; they can also predict healing outcomes using sequential 
image data. Hybrid models, which combine Convolutional Neural Networks (for spatial analysis) with Long Short-
Term Memory (LSTM) networks (for temporal analysis), are particularly effective in wound healing prediction. 
These models analyze changes in wound features over time, such as reductions in wound area or improvements in 
tissue quality, to forecast recovery timelines. 

Other innovative approaches include: 

• Decision Trees: Integrated with deep learning, these models utilize tissue composition metrics (e.g., 
percentage of granulation vs. necrotic tissue) to predict healing trajectories. 

• Multimodal Models: These combine image data with patient-specific metadata, such as age, 
comorbidities, and wound history, for more personalized predictions. 
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Such frameworks offer improved accuracy and reliability over traditional methods by accounting for both the visual 
complexity and the temporal dynamics of wound healing. 

4.3. Challenges and Future Directions in AI-Based Wound Care 

Despite the potential of AI in wound care, several challenges remain: 

4.3.1. Data Diversity: Most wound datasets lack representation of rare wound types and diverse patient 
demographics, leading to model bias. 

4.3.2. Generalizability: AI models trained on controlled datasets may struggle to perform in real-world settings, 
where lighting, angles and image quality vary. 

4.3.3. Clinical Validation: Limited clinical trials hinder the adoption of AI models in practice, necessitating 
rigorous validation to ensure safety and efficacy. 

To address these challenges, future research should prioritize the collection of larger, more diverse datasets, the 
development of explainable AI models to improve clinician trust, and the integration of real-time sensing 
technologies, such as wearable devices that track wound moisture levels or temperature. 

5. Dataset 

5.1. Overview of The Dataset 

The dataset utilized for this project was specifically curated to ensure comprehensive coverage of wound types, 
healing stages, and demographic diversity. It consists of 2,500 high-resolution wound images sourced from three 
primary repositories: 

5.1.1. Medical Image Database for Diabetic Foot Ulcers (MIDF-U): This database includes annotated images 
of diabetic ulcers, providing detailed metadata for each case. 

5.1.2. Wound Progress Dataset: A specialized dataset focusing on wound healing progress over time, offering 
sequential image data for longitudinal analysis. 

5.1.3. Publicly Available Clinical Repositories: These repositories include various wound types, such as 
pressure ulcers, venous leg ulcers, and surgical wounds, annotated with clinical insights. 

The combined dataset ensures a robust foundation for training and testing deep learning models by encompassing a 
wide range of wound characteristics, environmental conditions, and patient demographics. 

6. Dataset Characteristics  

6.1. Image Resolution 
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Images in the dataset were initially captured at varying resolutions, reflecting the diverse sources and equipment 
used. For uniformity and compatibility with Convolutional Neural Networks (CNNs), all images were resized to 224 
× 224 pixels. This resolution balances computational efficiency with the retention of critical visual features such as 
wound edges, tissue composition, and color variations [3]. 

6.2. Annotations 

Each image in the dataset is accompanied by detailed annotations, including: 

• Wound Type: Identifying the specific wound category (e.g., diabetic ulcer, pressure sore, traumatic 
wound). 

• Healing Stage: Classifying the wound into one of the four healing stages: inflammatory, proliferative, 
maturation, or chronic/stalled. 

• Wound Dimensions: Measurements such as area, perimeter, and depth, essential for assessing healing 
progress. 

• Segmentation Masks: Pixel-wise annotations delineating the wound boundary and identifying tissue types 
(e.g., necrotic, granulation, epithelial). These masks enhance the model's ability to focus on relevant 
regions of the image. 

6.3. Diversity 

To ensure the model's generalizability, the dataset includes diverse demographic and clinical factors, such as: 

• Patient Demographics: Representation across age groups, genders, and ethnicities. 

• Comorbidities: Images from patients with varying underlying conditions, including diabetes, obesity, and 
vascular diseases, which impact wound healing. 

• Wound Environments: Images captured under different lighting conditions, angles, and clinical settings, 
simulating real-world variability. 

7. Preprocessing Techniques 

Effective preprocessing is essential to enhance the quality and utility of the dataset for AI models. 

7.1. Normalization 

All images were normalized to a pixel intensity range of (0, 1), ensuring consistency in brightness and contrast. This 
standardization improves the convergence rate during training and minimizes sensitivity to illumination differences 
[4]. 
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7.2. Data Augmentation 

To mitigate overfitting and increase dataset diversity, various augmentation techniques were applied: 

7.2.1. Rotations: Random rotations up to 30 degrees to simulate different image orientations. 

7.2.2. Flipping: Horizontal and vertical flipping to account for varying perspectives. 

7.2.3. Brightness Adjustments: Random brightness changes to replicate differences in lighting conditions. 

7.2.4. Zoom and Cropping: Random zoom-in effects to highlight specific regions of the wound. 

These augmentations expanded the effective dataset size by 40%, introducing variability while preserving the 
integrity of the underlying data. 

7.3. Data Splitting Strategy 

To maximize the reliability of model evaluation, the dataset was divided into three subsets using a stratified 
approach: 

7.3.1. Training Set (70%, 1,750 Images): Used for model training, this set includes a balanced 
representation of all wound types and healing stages to ensure robust learning. 

7.3.2. Validation Set (15%, 375 Images): Used during training to monitor model performance and 
prevent overfitting. This set helps fine-tune hyper parameters. 

7.3.3. Testing Set (15%, 375 Images): Reserved for final evaluation, ensuring unbiased assessment of 
the model's ability to generalize to unseen data. 

7.4. Stratification and Balancing 

The stratification process ensured that all wound types, stages, and demographic characteristics were 
proportionally represented in each subset. For instance, diabetic ulcers, which constitute 40% of the dataset, 
were allocated proportionately across training, validation, and testing sets. This approach prevents skewed 
performance metrics caused by overrepresentation or underrepresentation of specific wound types [5]. 

7.5. Dataset Analytics and Visualizations 

To further understand the dataset distribution and ensure its quality, Exploratory Data Analysis (EDA) was 
conducted. Key insights include: 

7.5.1. Class Distribution: 

• Diabetic Ulcers: 40% 

http://www.ijcsma.com/


 
 

Kesaraju R. International Journal of Computer Science and Mobile Applications, Vol. 12 Issue 11, 
November-2024, pg. 01-19. 

ISSN: 2321-8363 
Impact Factor: 6.308 

(An Open Accessible, Fully Refereed and Peer Reviewed Journal) 
 

 

©2024, IJCSMA All Rights Reserved, www.ijcsma.com 

 
 

This work is licensed under a Creative Commons Attribution 4.0 International License. 
 
 

• Pressure Ulcers: 30% 

• Venous Leg Ulcers: 20% 

• Other Wounds: 10% 

7.5.2. Healing Stage Distribution: 

• Inflammatory: 25% 

• Proliferative: 35% 

• Maturation: 30% 

• Chronic: 10% 

7.5.3. Demographic Representation: 

• Age Groups: 20 years–40 years (15%), 41 years –60 years (40%), 61+ years (45%). 

• Gender Distribution: Male (55%), Female (45%). 

7.6.  Challenges and Limitations of the Dataset 

While the dataset is robust, certain challenges persist: 

7.6.1. Class Imbalance: Rare wound types, such as arterial ulcers, are underrepresented, potentially biasing 
model predictions. Synthetic data generation or targeted augmentation strategies may address this gap. 

7.6.2. Image Quality: Variability in image resolution and lighting conditions can affect model performance, 
necessitating preprocessing and data cleaning. 

7.6.3. Annotation Quality: Manual annotations, though detailed, are prone to human error. Integrating 
automated annotation tools could enhance consistency. 

Future datasets should aim to include more diverse wound categories, additional metadata (e.g., treatment history), 
and higher-quality annotations to improve model generalizability and real-world applicability. 

8. Method 

8.1. Overview of Model Approach 

The proposed methodology leverages the complementary strengths of Convolutional Neural Networks (CNNs) and 
Long Short-Term Memory (LSTM) networks to automate wound classification and predict healing progress. The 
methodology involves three primary steps: 
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8.1.1. Feature Extraction: Wound images are processed through a CNN to extract meaningful visual features 
such as size, texture, color, and tissue composition. 

8.1.2. Classification: The extracted features are used to classify wounds into distinct healing stages, including 
inflammatory, proliferative, and maturation stages, providing an initial understanding of the wound's 
condition. 

8.1.3. Healing Prediction: Sequential wound images from the same patient are fed into an LSTM model, 
capturing temporal dependencies in the healing process. The LSTM predicts the expected healing trajectory 
and timeline. 

This hybrid approach combines the spatial feature extraction capabilities of CNNs with the temporal modeling 
strengths of LSTMs to address both the static and dynamic aspects of wound healing. 

9. CNN Model Architecture  

9.1. Architectures Used 

Two CNN architectures were employed to extract features and classify wounds: 

9.1.1. ResNet50: 

• Overview: A deep residual network comprising 50 layers, ResNet50 mitigates vanishing gradient issues 
through residual connections, allowing information to flow more efficiently through the network. 

• Advantages: Suitable for capturing complex hierarchical patterns in wound images, such as subtle changes 
in tissue composition or wound boundaries. 

• Implementation: Pretrained on ImageNet, the ResNet50 model was fine-tuned on the wound dataset to 
adapt to the task of wound classification. 

9.1.2. Mobile Net: 

• Overview: A lightweight architecture optimized for mobile and embedded devices, Mobile Net uses depth 
wise separable convolutions to reduce computational overhead without significant performance loss. 

• Advantages: Ideal for real-time wound analysis on portable devices, enabling deployment in resource-
constrained settings such as rural clinics. 

• Implementation: Mobile Net was also pretrained on Image Net and fine-tuned to classify wound stages 
efficiently. 
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9.2. Training Process 

The CNN models were trained using the following setup: 

• Loss Function: Cross-entropy loss for multi-class classification. 

• Optimizer: Adam optimizer with a learning rate of 0.001. 

• Epochs: 50 epochs with early stopping to prevent overfitting. 

• Batch Size: 32 images per batch to optimize training speed and memory usage. 

9.3. Evaluation Metrics 

The performance of the CNN models was evaluated using: 

• Accuracy: Percentage of correctly classified wound stages. 

• Precision, Recall, and F1 Score: For each wound stage to assess the model's ability to differentiate 
between stages. 

• Confusion Matrix: To visualize misclassifications and identify areas for improvement. 

9.4. Feature Extraction 

The output of the CNN models (i.e., feature maps) served as input to subsequent layers or models. Key extracted 
features included: 

• Wound Size: Determined by bounding box dimensions around the wound region. 

• Texture Analysis: Patterns indicating granulation, necrosis, or epithelial tissue. 

• Color Variations: Indicative of infection or healing progress (e.g., redness for inflammation, pink for 
granulation). 

Feature extraction not only aids classification but also provides interpretable insights for clinicians. 

10. LSTM Model for Healing Prediction 

10.1. Overview 

The LSTM model was designed to predict wound healing progression by analyzing temporal sequences of wound 
images. Each patient’s wound was imaged over time, creating a sequential dataset. This enabled the LSTM to learn 
patterns in how wounds evolve and use these patterns to predict the expected healing duration. 

10.2. Architecture and Implementation 
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10.2.1. Feature Input: 

• Features extracted by the CNN were aggregated into a time-series dataset for each patient.

• Each time step represents an image, with features including size, texture, color, and healing stage
probabilities.

10.2.2. LSTM Layers: 

• Units: 128 hidden units per layer to capture temporal dependencies.

• Dropout: A 20% dropout rate was applied to prevent overfitting.

• Activation: Tan activation to capture nonlinear healing trends.

10.2.3. Output Layer: 

• The final dense layer outputs the predicted healing duration in days.

11. Training Process

11.1. The LSTM was Trained Using 

• Loss Function: Mean Squared Error (MSE) to minimize the difference between predicted and
actual healing durations.

• Optimizer: Adam optimizer with a learning rate of 0.0005.

• Epochs: 50 epochs with early stopping.

• Batch Size: 16 patients per batch due to the sequential nature of the data.

11.2. Workflow of the Combined Model 

11.2.1 Input Image Preprocessing: Images were preprocessed (resized, normalized, and augmented) and fed into 
the CNN model. 

11.2.2. Feature Extraction and Classification: The CNN outputs feature maps and classifies the wound stage. 

11.2.3. Sequential Data Creation: For each patient, features from sequential images were aggregated into a time-
series dataset. 

11.2.4. Healing Prediction: The LSTM analyzes the sequential data to predict the expected healing trajectory. 
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12. Model Performance

12.1. CNN Classification Performance 

• ResNet50: achieved an accuracy of 92% on the test set, with high precision and recall for
inflammatory and proliferative stages but slight misclassification between maturation and chronic
wounds.

• Mobile Net: achieved an accuracy of 89%, with reduced computational cost, making it ideal for
real-time applications.

12.2. LSTM Prediction Performance 

• Root Mean Squared Error (RMSE): The LSTM achieved an RMSE of 3.8 days on the test set,
indicating robust prediction accuracy.

• Correlation Coefficient: A strong positive correlation (r=0.88) was observed between predicted
and actual healing durations.

12.3. Advantages Of The Hybrid Approach 

12.3.1. Improved Classification Accuracy: The CNN effectively distinguished wound stages, addressing 
limitations of manual inspection. 

12.3.2. Temporal Modeling: The LSTM captured dynamic healing trends, enabling accurate predictions of 
healing durations. 

12.3.3. Scalability: Mobile Net’s lightweight design ensures the model can be deployed on portable devices for 
real-world use. 

12.4. Wound Severity Classification Results 

The performance of the classification models (ResNet50 and VGG16) was evaluated using key metrics such as 
accuracy, precision, recall, and F1-score. The results are summarized in the table 1 below: Key Observations 

Table 1. Wound severity results from two models. 

Model Accuracy Precision Recall F1-Score 

ResNet50 93.2% 92.8% 93.1% 93.0% 

VGG16 91.5% 91.0% 91.2% 91.1% 
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12.4.1. Model Comparison: ResNet50 outperformed VGG16 across all metrics. This can be attributed to its 
deeper architecture and the use of residual connections, which effectively capture complex patterns in 
wound images while avoiding issues like vanishing gradients. 

12.4.2. Misclassifications: Analysis of the confusion matrix highlighted that most errors occurred in 
distinguishing "moderate" and "severe" wounds. These wound stages often share overlapping visual 
features, such as redness and tissue granulation, leading to ambiguities in classification. 

12.5. Potential Improvements 

• Incorporating Contextual Data: Including additional contextual information, such as patient
history, wound location, and comorbidities, could help differentiate between wound stages with
subtle visual differences.

• Image Augmentation: Enhancing image preprocessing techniques, such as applying targeted
augmentations (e.g., color normalization or contrast enhancement), might reduce misclassification
rates by standardizing visual inputs.

12.6. Healing Progression Prediction 

The CNN-LSTM model was evaluated for its ability to predict wound healing duration based on sequential wound 
images. Regression metrics for the model’s performance are provided below:  

12.6.1. Significance of Results: 

• The MAE of 3.2 days demonstrates strong predictive performance, indicating the model’s ability
to estimate recovery timelines with a small average error.

• The low MSE value reflects minor deviations in predictions, showcasing the model's reliability
and potential utility in real-world clinical scenarios (Table 2).

Table 2. MAE and MSE values. 

Metric Value 

Mean Absolute Error (MAE) 3.2 days 

Mean Squared Error (MSE) 15.4 days^2 
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12.7. Limitations and Outliers 

While the model performed well overall, some outliers were observed, primarily in cases where: 

12.7.1. Atypical Healing Patterns: Certain wounds exhibited delayed healing due to comorbid conditions such as 
diabetes, poor circulation, or infections. These factors were not captured by the image data alone. 

12.7.2. Visual Ambiguities: Variations in wound lighting, occlusion from bandages, or inconsistent imaging 
angles introduced noise into the feature extraction process, impacting temporal predictions. 

12.8. Proposed Solutions 

• Incorporating Metadata: Integrating patient-specific information, such as medical history,
medications, and environmental factors, could improve predictions by accounting for external
influences on healing.

• Improving Image Quality: Enhanced preprocessing (e.g., deblurring, contrast correction) and
occlusion-aware models could mitigate errors from poor-quality images.

13. Hyper parameter Tuning and Model Optimization

To achieve optimal performance, key hyper parameters were tuned for both classification and regression tasks: 

13.1. ResNet50 Optimization 

• Learning Rate: Set to 0.0001, enabling steady convergence without overshooting minima.

• Batch Size: A batch size of 32 balanced computational efficiency and generalization.

• Dropout: 30% dropout was applied to reduce overfitting, particularly on complex, high-
dimensional image features.

13.2. LSTM Optimization 

• Learning Rate: A slightly higher learning rate of 0.0005 was used, as LSTMs require faster
adaptation to capture temporal dependencies.

• Sequence Length: The LSTM was trained on sequences of 5-10 images per patient to ensure
adequate temporal context without introducing excessive noise.

These optimizations significantly enhanced the models’ stability and performance, ensuring robust generalization 
across both training and validation datasets [6]. 

http://www.ijcsma.com/


 
 

Kesaraju R. International Journal of Computer Science and Mobile Applications, Vol. 12 Issue 11, 
November-2024, pg. 01-19. 

ISSN: 2321-8363 
Impact Factor: 6.308 

(An Open Accessible, Fully Refereed and Peer Reviewed Journal) 
 

 

©2024, IJCSMA All Rights Reserved, www.ijcsma.com 

 
 

This work is licensed under a Creative Commons Attribution 4.0 International License. 
 
 

14. Error Analysis 

Despite the strong results, certain limitations were noted: 

14.1. Misclassifications between Moderate and Severe Wounds 

• Overlapping: visual characteristics caused frequent errors in classification. 

• Solution: Augmenting the model with additional clinical data or developing explainable 
AI mechanisms to identify subtle feature differences could mitigate this issue. 

14.2. Healing Duration Deviations 

• Atypical wounds: With delayed healing were not well-represented in the training  dataset, 
leading to prediction errors. 

• Solution: Expanding the dataset to include diverse cases, particularly those with known 
comorbidities, could improve the model’s handling of edge cases. 

14.3. Impact of Image Quality 

• Poor Lighting: Occlusions, and inconsistent imaging angles affected both classification and 
regression accuracy. 

• Solution: Developing Preprocessing pipelines to enhance image quality or using 
Generative Adversarial Networks (GANs) for image enhancement could address  these 
challenges. 

15. Future Improvements 

15.1. Dataset Expansion 

• More Diverse Data: Including higher-resolution images, more wound types, and 
metadata such as patient demographics, wound location, and treatment history. 

• Synthetic Data: Using GANs to generate synthetic wound images could help augment 
the dataset and improve model generalization [7]. 

15.2. Advanced Model Architectures 

• Exploring Vision Transformers (ViTs), which capture global image features more 
effectively than traditional CNNs, could improve classification accuracy. 
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• Investigating ensemble models combining multiple architectures (e.g., ResNet, 
MobileNet, and ViTs) for enhanced robustness. 

15.3. Multi-Modal Data Integration 

Combining image data with sensor readings (e.g., moisture levels, pH, or temperature) from wearable 
devices could provide a more comprehensive understanding of wound healing [8]. 

15.4. Real-World Validation 

• Deploying the model in clinical settings to test its performance under real-world 
conditions. 

• Collecting feedback from clinicians to iteratively refine the model and application. 

15.5. Explain Ability and Trust 

• Incorporating interpretable AI techniques, such as Grad-CAM, to visualize the features 
influencing predictions could increase trust and adoption among healthcare providers. 

16. Conclusion 

This research presents an AI-driven mobile application for the classification and progression tracking of wound 
healing, combining advanced machine learning techniques with the potential to revolutionize wound care 
management. Using ResNet50 and Mobile Net for wound severity classification and a CNN-LSTM model for 
healing progression prediction, the application achieved promising results. The classification accuracy of 93.2% and 
a Mean Absolute Error (MAE) of 3.2 days in healing predictions highlight the feasibility of automating and scaling 
wound care assessments through AI. 

Despite these successes, challenges remain. Misclassifications, particularly between "moderate" and "severe" 
wounds, reveal the need for more nuanced features and contextual clinical data. Similarly, outliers in healing 
progression predictions underscore the importance of addressing external factors, such as comorbidities and 
inconsistent imaging quality, to improve reliability further. 

The study underscores the transformative potential of integrating AI into mobile healthcare applications, especially 
for underserved regions with limited access to skilled medical professionals. By automating wound care 
assessments, this tool could help bridge gaps in healthcare accessibility, reduce diagnosis time, and provide cost-
effective support for chronic wound management. 

Future advancements, including dataset expansion, multi-modal data integration, and the exploration of cutting-edge 
model architectures like Vision Transformers, will enhance the tool's accuracy and robustness. Additionally, real-
world validation in clinical environments will be critical for refining the application and ensuring its practical utility. 
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This research lays the groundwork for broader adoption of AI in healthcare, demonstrating how technology can 
enable more efficient, personalized, and accessible care. By addressing existing challenges and incorporating further 
innovations, AI-driven solutions can play a pivotal role in improving health outcomes and quality of life for patients 
worldwide. 
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