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Abstract 

This paper explores sign language, a natural mode of communication for the deaf community. However, sign language often 

remains challenging to learn and creates communication barriers between the deaf and the hearing. This work addresses this issue 

by assessing the performance of the state-of-the-art convolutional model, ConvNeXt, on the novel task of sign language 

recognition. The research yields compelling results, with accuracies surpassing 99% and fast training times that rival advanced 

Vision Transformers (ViTs). The experiments are rigorously evaluated using the publicly available Sign-Language-MNIST 

Dataset, an established benchmark for sign language research. A comparison of the generalizability of ConvNeXt and ViT is 

further undertaken using the publicly available Indian Sign Language Dataset which shows ViTs generalize better by ~3% in sign 

language recognition tasks. The findings of this study contribute to the broader goal of improving communication for the deaf 

community while also highlighting the capability of carefully constructed lightweight convolutional models that have recently 

fallen out of favour. 

Keywords: ConvNext; Generalizability; Isolated sign language recognition; Vision transformers 

1. Introduction
Hearing loss and deafness are experienced by 230 million people worldwide, two-thirds of who live in developing 
countries [1]. The majority of people in the deaf community, consequently, rely on some form of sign language as 
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their primary method of communication with the world. However, as effective as a particular sign language is, it can 
at times be difficult and time-consuming to master for the hearing community. In recent years, computer vision, 
which involves interpreting visual data using computers, has witnessed a remarkable transformation, owing to 
advancements in deep learning techniques such as convolutional and transformer based models. Convolutional 
Neural Networks (CNNs), in particular, pioneered breakthroughs in tasks like image classification, object detection, 
and semantic segmentation [2-4]. 

In the context of sign language recognition, these computer vision models have been instrumental in both continuous 
and isolated sign language recognition. This is due to the necessity of capturing fine-grained spatial information for 
the accurate classification of sign data. Traditional CNNs have been the go-to models for such tasks due to their 
efficiency in extracting local features and patterns [5]. However, the emergence of ViTs and SWIN Transformers 
also opened new possibilities. Their capacity to capture long-range dependencies and hierarchical features is very 
useful in recognizing the nuanced gestures of sign languages [6, 7].  

Isolated Sign Language Recognition (ISLR) serves a critical role in the realm of computer vision’s application to 
sign language, providing a crucial stepping stone toward advanced interpretation systems. By accurately classifying 
distinct signs, ISLR facilitates a foundational understanding of sign language, much like individual words in a 
sentence. This minute focus is essential, as each sign is a discrete gesture that conveys a specific meaning and 
requires precise recognition by computational models.  

While ISLR focuses on these singular sign elements, Continuous Sign Language Recognition (CSLR) ventures into 
the more complex domain of interpreting sign language flows, where gestures evolve in a sequence akin to 
sentences in verbal communication. CSLR has recently been advancing rapidly, propelled by innovations such as 
Correlation Networks (CorrNets), which explicitly capture body trajectories across frames in order to effectively 
identify a sign in context [8].  

Despite the immense progress in CSLR, this research zeroes in on ISLR due to its foundational importance. Mastery 
of ISLR is imperative in creating robust systems capable of tackling the intricacies of sign language. By dissecting 
and thoroughly understanding each sign’s individual components, the groundwork for more complex tasks with 
more successful outcomes can be laid. This ensures that subsequent interpretations of continuous signing are built 
upon a nuanced understanding of the basic sign lexicon.  

Before the advent of deep learning, which involves learning representations through networks with many layers, 
most methods for ISLR relied on classic machine learning models with handcrafted features. Examples involve 
using Sub-Units, Principal Component Analysis (PCA), and template matching for sign language recognition. 
However, despite achieving decent accuracy on the dataset they were constructed for, the overarching limitation of 
classical machine learning algorithms is that they require careful handcrafting of features and have poor scalability 
and generalizability. Current implementations are varied and highly sophisticated and models like MSG-3D allow 
for flexible spatial-temporal feature extraction and improved classification. Although these methods boast great 
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performance and effective feature extraction, they can be quite data-hungry and slow to train. This presents yet 
another alternate approach to the exhaustively researched task of ISLR fueled by groundbreaking research with 
respect to CNNs.  

In 2022, a new type of convolution-based model architecture was proposed, known as "ConvNeXt" [9]. ConvNeXt 
is characterized by its extremely lightweight design while providing classification accuracies and scalability that 
can, under certain conditions, surpass those of popular transformer based architectures. While direct comparisons 
can be contingent on factors such as training conditions, model size, and parameter count, ConvNeXt has 
demonstrated impressive performance, even exceeding that of SWIN Transformers in image classification on the 
ImageNet Dataset when optimized training and architectural conditions are met. This suggests that the high 
performance typically associated with data-intensive, low-diverging Transformer-based models, which excel in 
many scenarios, can be achieved, or even surpassed by convolutional models like ConvNeXt. Despite this, 
ConvNeXt manages to retain the simplicity and efficiency inherent to standard CNNs. These pre-trained models are 
adept at capturing spatial information from images and transfer their learning effectively, facilitating ease in training 
and fine-tuning. 

The work proposed in this paper aims to provide a holistic view of the ConvNeXt model on a novel task of ISLR 
and investigate how it transfers its learning to this task compared to in favor vision transformers. To further the 
exploration, we will investigate how misclassifications occur via the use of class activation maps that draw from 
weights in the latter stages of the classification process. We will then compare our results to those obtained using 
transformers as the classification model on the benchmark Sign-Language-MNIST dataset. Lastly, the 
generalizability of both models will be tested using the Indian Sign Language dataset which is a different sign 
language to the one on which the models will be fine-tuned. We hypothesize that the performance and 
generalizability of both architectures will be comparable in the task of ISLR, but ConvNeXt could potentially boast 
superior convergence times and ease of training.  

2. Literature Review

2.1. Convolution-Based Models 

The birth of CNNs can be traced back to the work of Yann LeCun et al. in 1989. Their groundbreaking paper 
introduced novel neural network architecture for the recognition of handwritten zip codes. The model, dubbed 
LeNet-5, was pioneering because it demonstrated the effectiveness of convolutional layers for spatial data 
processing and laid the foundation for future advancements in CNNs [10].  

A significant leap in the field was marked by the introduction of AlexNet in 2012. Krizhevsky et al.’s won the 
ImageNet Recognition Challenge by some margin. This was because AlexNet was a deeper model than previous 
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CNNs and introduced key innovations such as the Rectified Linear Unit (ReLU) as the activation function and 
dropout for regularization [11]. 

The introduction of ResNet in 2015 by He et al. marked yet another milestone for CNNs. The architecture was able 
to address the “vanishing gradients” problem in very deep networks via the introduction of residual connections. The 
model performed impressively on the ImageNet challenge and ushered a shift towards deeper, more complex 
network architectures [12]. 

2022 marked yet another milestone for convolution-based neural networks with the introduction of “Con-vNeXt”. 
This model surpassed all previous CNNs as it aimed to “modernize” traditional ResNets using principals that 
defined transformer architecture. From the use of non-local self-attention via larger kernels in the macro design to 
the use of non-linearity like Gaussian Error Linear Units (GeLUs) as part of the micro design, a revolutionary 
convolution-based architecture was created. It boasted accuracies of 88% on the ImageNet-1k dataset, surpassing 
state-of-the-art SWIN Transformers at the time [13]. 

2.2. Transformer Models 

The inception of Transformers, which is a specific type of model architecture, revolutionized the field of Natural 
Language Processing (NLP). First introduced in 2017, the Transformer architecture replaced recurrent and 
convolutional layers in favor of the self-attention mechanism [14]. This mechanism allowed the model to weigh the 
significance of different parts of the input data relative to each other, which allowed for long-term dependencies in 
the data to be captured much more easily and efficiently. The Transformer’s ability to process data in parallel 
significantly reduced training times and improved performance on a variety of NLP tasks such as machine 
translation, language modelling, and text summarization. This set a new standard for subsequent models. 

Inspired by the success of Transformers in the NLP domain, researchers sought to extend their application to 
computer vision. The Vision Transformer (ViT) marked a pivotal transition. They approached image classification 
by partitioning image data into fixed-sized patches, linearly embedding the patches, and processing the patches 
through the Transformer mechanism. ViTs demonstrated that Transformers could achieve state-of-the-art results in 
image classification tasks, challenging the dominance of CNNs. The reason behind these successful results was the 
model’s ability to capture global dependencies between image patches and this proved beneficial for learning 
complex visual data. 

SWIN Transformers were introduced to deal with the quadratic time complexity of the self-attention mechanism 
with respect to the number of patches. They utilize a hierarchical structure that processes images in stages, reducing 
resolution while increasing the embedding dimension. Furthermore, they apply self-attention within local windows 
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that shift across layers, enabling efficient modelling of local and global contexts [15]. This design facilitated the 
application of Transformers to a broader range of vision tasks, including those with high-resolution input. 

2.3.  Isolated Sign Language Recognition 

To kick start the exploration of isolated sign language detection, before the advent of deep learning frameworks, 
Kadous’s utilization of Power Gloves, which, by applying PCA for dimensionality reduction of data, transformed 
complex hand gesture data into a manageable form of Auslan (Australian) sign recognition [16]. While the approach 
was a step forward, it was limited by the gloves’ rudimentary sensory capabilities and the cumbersome nature of the 
hardware. Furthermore, Badhe et al. proposed a gesture learning algorithm for the translation of Indian Sign 
Language. A combinatorial algorithm is used to track hand movements as part of data pre-processing and 
recognition is done using template matching. They created templates from vast amounts of data and achieved 
accuracies of up to 97.5%. However, the template matching algorithm had limited generalization capability due to 
the handcrafting of features [17]. Another approach was the use of sub-units to disassemble signs into smaller, 
distinctive components to allow for more granular recognition, thereby increasing the classifier’s generalization 
capability. Despite achieving sufficient accuracy on the classification task, the model required more data to be able 
to accurately learn features that were signer specific and those that were independent [18]. 

Thus arise the need for deep learning frameworks for sign language recognition. The research proposed by O. Koller 
et al. leverages the flexibility of standard CNNs for learning spatial filters and uses Long Short-Term Memory 
(LSTM) networks to capture temporal information. They use a multi-stream CNN-LSTM-HMM framework, via 
weak supervised learning, to discover sequential parallelism in sign language videos. Although their work revolves 
around CSLR and was able to achieve error rates of 5% on the Phoenix-14 dataset, it is still crucial to understand 
their framework for isolated recognition of signs on a per frame sampling basis. Their proposed model is 
computationally heavy and is more effective at capturing mid to long-range dependencies in the data [19].  

Vazquez et al. built on these models by introducing RGB data as input into a 3D-CNN model. Besides capturing 
mid to long-term dependencies in the data, the model was now effective in extracting short-term dependencies 
which is crucial in sign language recognition. The model used was S3D and it displayed top-1% accuracies of up to 
90% when used in isolation for detection. The model re-quires fewer parameters to learn and produces better 
accuracy results than most other 3D-CNN architectures. The work further used a skeleton-based graph approach that 
incorporated a flexible mechanism to understand the connected variations between nodes of any part of the graph on 
a predefined spatial and temporal scale by learning different levels of semantic information of the graph. Their 
MSG-3D approach resulted in 95.51% top-1% accuracy [20].  

More recently, Pathan et al. introduced a multi-headed CNN which would take in a fusion of image and hand 
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landmark data as features. This custom CNN is lightweight and has architecture not unlike those found in standard 
CNNs. The work was able to demonstrate the effectiveness of adding hand landmark data to regular RGB data as it 
improved the model’s overall classification accuracy from ~96% to ~99%. 

3. Methods
3.1. The ConvNeXt Model
The ConvNeXt model is an extension of the standard ResNet-50 model using principles from hierarchical vision 
transformers and the model construction process is represented in figure 1.  

The training procedure of the model entails using the AdamW optimizer and performing random cropping and 
resizing as part of data augmentations. A number of 300 epochs was suggested for training in the paper but our task 
involved simply fine-tuning the model pre-trained on the ImageNet-21k dataset. For this reason, and further 
computational constraints, fine-tuning was done for 5 epochs [21].  

The macro design of the model involves changing the stage compute ratio. CNNs, by design, are multi-stage models 
where each stage involves convolution, pooling, and normalization operations to name a few. Traditional ResNets 
have (3, 4, 6, and 3) in each stage but ConvNeXt has (3, 3, 9, and 3). Furthermore, the “stem” cell dictates input 
image processing and comprises a 7×7 convolutional layer with stride 2 followed by pooling in standard ResNets. 
ConvNeXt, instead, implements a “pacify stem” cell which consists of a 4 × 4 convolution layer with stride 4 (non-
overlapping).  

The micro design of the model involves the use of Gaussian Error Linear Unit (GELU) which is a smoother version 
of ReLU and performs layer normalization instead of batch normalization. Finally, it employs fewer normalization 
layers and fewer activation functions than traditional ResNets while also introducing separate down sampling layers. 

Figure 1. Showcases the design journey of ConvNeXt from a standard ResNet-50. Most of the macro and micro design 
changes are highlighted in this figure along with how each change affected classification accuracy. 
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For the purposes of our study and compute limitations, we found the ConvNeXt-T (iny) model to be sufficient and 
its architecture can be seen in figure 2. 

Figure 2. CovNeXt-T architecture. 

3.2. The ViT Model 
For the purposes of this exploration, a ViT for Image Classification model is used from Hugging Face. The model is 
pr-etrained using ImageNet-21k. At the core of this model lies the ViT. The architecture begins by transforming an 
input image into a sequence of flattened patches using convolution operation with a kernel size of 16 and stride 16. 
The data is then input into the positional encoder which comprises of 12 ViTLayers for the application of self-
attention to extract and integrate relevant information from various parts of the image. 

Following the attention mechanism is a 2-step feed-forward network which first expands the encodings to a higher 
dimensional space of 3072, then to the original dimension of 768. Layer normalization is applied before each 
attention and feed-forward operation for increased stability [22].  

The output of the feed-forward layers is then passed through a final layer normalization layer and then to the 
classifier head. A detailed architecture of the ViT model can be seen in figure 3. 

Figure 3. ViT architecture diagram. 
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3.3. Class Activation Maps 
Class Activation Maps (CAMs) are a visualization technique that presents the influential regions within an input 
image for a model’s classification decision. They generate heat maps by projecting back the weights of the output 
layer onto the final convolutional layer, thereby revealing areas of importance for a particular class prediction [23].  
In the context of ConvNeXt in ISLR, CAMs can be particularly useful for interpreting the model’s focus on spatial 
features critical for accurate classification. By applying CAMs, it is ensured that ConvNeXt attends to the relevant 
segments of the image in order to perform accurate classification. This visualization technique not only serves to 
deepen one’s understanding of the model’s internal mechanisms but also serves as a diagnostic tool to enhance 
model performance by identifying overlooked features in the training process.  

4. Experiments

The aim of the first experiment is to gauge whether the ConvNeXt model can outperform the ViT model in terms of 
training efficiency and classification accuracy on the test set. The exploration begins by choosing a dataset and 
running a baseline classification for both models on the dataset of choice. Once the baseline is obtained, hyper 
parameter tuning will be conducted to get the highest possible classification accuracy for both models and their 
performances will be evaluated [24]. 

The aim of the second experiment is to compare the generalizability of the ConvNeXt to that of the ViT. The 
ConvNeXt model is known to transfer its learning amongst tasks well, but vision transformers are hailed for their 
generalizability. In order to conduct this exploration, another dataset is needed. This dataset has to be one with 
limited samples per class to truly test how well both models can transfer their learning onto the similar task of sign 
language recognition but on another signing language. Following the obtaining of baseline classification accuracies 
for both models, hyper parameter tuning will be conducted and final classification accuracies will be recorded for 
both models. 

4.1. Datasets 

4.1.1. Sign-Language-MNIST: The Sign-Language-MNIST dataset emerged as the optimal choice for the first 
experiment given its widespread use in other papers involving sign language recognition.  The dataset itself 
consists of American Sign Language (ASL) letters and is a multi-class dataset consisting of classes 0-24 
(letters ‘J’ and ‘Z require motion and are excluded) as shown in figure 4. It consists of 27,455 28 × 28 
grayscale training images and 7,172 28 × 28 grayscale test images.  
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Figure 4. ASL signs and their corresponding classes. 

Upon doing initial data exploration, it was discovered that the distribution of training data amongst the classes 
was fairly even: between 900-1300 images per class. Furthermore, outlier detection was conducted using PCA 
and 3100 outliers were found using an image reconstruction error threshold of 0.99. The image data was then 
reshaped from a flattened array to a 28 × 28 array and class labels 0-25 were remapped to 0-23 to exclude 
classes ‘J’ and ‘Z’ for which there was no data. The data was then resized to a resolution of 224 × 224 and 
converted to image and label tensors [25]. Finally, the training data was split into 80% training data and 20% 
validation data for hyper parameter tuning Figure 5. 

Figure 5. Examples of samples from the ISL dataset.

http://www.ijcsma.com/


Darda A. International Journal of Computer Science and Mobile Applications, Vol. 12 Issue 10, October -
2024, pg. 01-15. 

ISSN: 2321-8363 
Impact Factor: 6.308 

(An Open Accessible, Fully Refereed and Peer Reviewed Journal) 

©2024, IJCSMA All Rights Reserved, www.ijcsma.com 

This work is licensed under a Creative Commons Attribution 4.0 International License. 

4.1.2. Indian Sign Language: The ISL dataset was selected to evaluate the generalizability of the models, 
considering the constraints of data availability for all classes. The dataset consists of images for 23 signs 
excluding the ‘H’, ‘J’, and ‘Y’ classes and each image is 126 × 126 × 3 pixels. There are mere 20-50 
samples available for each class, but this is ideal when evaluating model generalization capabilities as in 
figure 5.  

This is done to add variability and realism akin to real-world situations and serves the purpose of testing model 
robustness. The noise is in the form of background replacement using blurry, colorful, and messy backgrounds in 
order to emulate dynamic conditions. The data is loaded and processed in much the same way as the sign-language-
MNIST dataset and finally divided into 60% training, 20% validation, and 20% test sets for each class. 

4.2. ConvNeXt 
We fine-tune the ConvNeXt model along with the custom classification head. Initially, baselines were recorded for 
both models using a batch size of 32 and a learning rate of 0.001 for the ConvNeXt model on the Sign-Language-
MNIST dataset. After recording the baselines, the model’s hyper parameters are tuned and the classification 
accuracies of the best model are recorded for comparison. 
Following the tests on the initial dataset, the best ConvNeXt model is loaded and used to record baseline accuracies 
for the ISL dataset. Following this, the model undergoes hyper parameter tuning and we record the best 
classification accuracies for the generalization experiment [26]. 

4.3. ViT 
The fine-tuning of the ViT model occurs in the same way as that of the ConvNeXt model using the Sign-Language-
MNIST dataset. Baseline performance was recorded for the model using a batch size of 64 and a learning rate of 
0.0003. After optimizing these hyper parameters, the best classification accuracy of the ViT was established for the 
dataset. 
Following the baseline assessments, we proceed with determining the generalizability of the model on the ISL 
dataset. This decision is well informed due to the limited volume of data available for fine-tuning, which facilitates 
model adaptability for nuanced sign language features. The baseline model is established, hyper parameter tuning is 
conducted, and the best classification accuracies are then recorded on the ISL dataset. 

5. Results
5.1. ConvNeXt 
Accuracies on the Sign-Language-MNIST test set and training times were recorded for the ConvNeXt model. The 
best hyper parameters found for the ConvNeXt model were a batch size of 64 and a learning rate of 0.002. The loss 
of the tuned model over 5 epochs is presented in figure 6. and the corresponding classification accuracies by class 
are represented in figure 7. Via the confusion matrix. 
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Figure 6. Training and validation loss of the tuned ConvNeXt model over 5 epochs on sign-language-MNIST. 

Figure 7. Confusion matrix of ConvNeXt on Sign-language-MNIST. 

We then proceeded to record the accuracies of the ConvNeXt on the ISL dataset as part of the generalizability 
evaluation. The best hyper parameters found were a batch size of 4 and a learning rate of 0.0015. The best model is 
then used to record classification accuracies on the test set and these results are presented in figure 8. 

Figure 8. Confusion matrix of ConvNeXt on ISL. 
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5.2. ViT 
The experimental process of the ViT was the same as that of the ConvNeXt. We found the best hyperparameters for 
this model to be a batch size of 32 and a learning rate of 0.001. ViT is the classification accuracy of the model on 
each class of the Sign-Language-MNIST dataset. Finally, represents the confusion matrix of the tuned ViT model, 
with batch size 1 and learning rate 3.9e- 5, on the   ISL dataset. 

Both the ViT and the ConvNeXt achieved comparable and superior accuracies >99% on the test set and this was as 
hypothesized. However, ConvNeXt proved to be more robust to hyper parameter changes and consistently 
performed well as compared to the Vision transformer. Moreover, ConvNeXt required 6x less time to train than the 
ViT as seen in table 1. Accuracies on the ISL dataset are presented in table 2. The ViT model boasts superior 
generalizability as was hypothesized but the ConvNeXt model can be seen to transfer its learning to a similar task 
quite adequately. Both models achieved accuracies of >80%. 

Table 1. Results on the Sign-Language-MNIST dataset. 

Model Training Time (mins) % Accuracy 
ConvNext-Tiny (Baseline) 12.3 98.4 
ConvNext-Tiny (Tuned) 10.8 99.7 

ViT (Tuned) 70.5 99.9 

Table 2. Results on the ISL dataset.            

Model % Accuracy 
ConvNext-Tiny (Baseline) 71.3 
ConvNext-Tiny (Tuned) 81.3 

ViT (Baseline) 62.5 
ViT (Tuned) 84.6 

6. Discussion

The first noticeable advantage of the ConvNeXt over the ViT was the training time. This is less significant on 
smaller datasets like the ISL but grows exponentially with the amount of data. The slower training times of the ViTs 
can be attributed to their attention mechanism which compares every image patch to every other patch and the 
quadratic complexity of this operation can become computationally expensive with an increasing number of patches. 
ConvNeXt, on the other hand, uses convolution to capture spatial information and this is a much faster operation 
than self-attention, boasting linear complexity. Another significant factor affecting training time could be the lack of 
inductive bias present in ViTs. Convolutions inherently assume locality and spatial hierarchies in an image which 
allows for more efficient spatial learning of features. ViT lacks these inductive biases and requires more data to 
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learn these spatial hierarchies. A final factor could be the global processing of images done in ViTs which is useful 
in capturing long-range dependencies but does require more compute. 
Another noticeable point is the significant increase in classification accuracy between the baseline ViT and tuned 
ViT. This is indicative of the fact that batch sizes and learning rates are pivotal for transformer performance. This 
could be a result of the sequential nature of the data representation that occurs within the transformer architecture. 
It becomes evident that both models have classified everything correctly except for 1-2 classes. To get a better idea 
of why this misclassification was occurring in the ConvNeXt model, class activation maps were used to overlay 
weights of the last stage of convolution onto the input image. Upon reviewing the class activation maps, it became 
clear that signs for ‘E’ and ‘M’ differed ever so slightly. The granularity present in the input image itself might have 
led to additional noise and eventual misclassification. However, an interesting question is why the model did not 
misclassify, for example, sign ‘M’ as sign ‘N’, both being very similar in their gesture. The generalizability of the 
ConvNeXt model is not as powerful as that of the ViT as there exist a 3% difference between their classification 
accuracies on the ISL dataset. ConvNeXt aims to emulate the non-local attention mechanism present in transformers 
by using larger, depth-wise convolutions. However, it is merely an approximation and is not able to represent global 
relationships in the data as well as the attention mechanism itself. The exhaustive comparison of image patches 
means that with enough data, transformers are able to learn strong patterns and transfer their learning better to 
similar tasks. Convolution operations inherently lack this global property and, therefore, ConvNeXt was more 
susceptible to the addition of controlled noise in the ISL data through the class activation maps. 

7. Conclusion

The goal of this exploration was to determine the transfer learning and generalization capabilities of ConvNeXt 
models in a task such as sign language recognition. To further set a benchmark for comparison, the same study was 
conducted using ViTs. The ConvNeXt was able to achieve almost the same accuracy as a vision transformer but 
offered a huge boost in training time on a dataset with sufficient samples, such as the sign-language-MNIST dataset. 
However, it did not generalize as well as the ViT on a dataset with limited samples, such as the ISL dataset and was 
susceptible to misclassification due to the addition of controlled noise. This work does highlight the power of 
convolution based models despite their recent drop in popularity. They are lightweight and flexible models that are 
sufficient for tasks that do not require learning extremely long-range dependencies. Finally, to the best of our 
knowledge, this work is one of the first to utilize the ConvNeXt model for the task of ISLR. 

8. Future Work

In the current research, the verification of model scalability was constrained due to the limited computational 
resources available, but this presents a promising avenue for future studies. One could focus on assessing the 
performance of models like ConvNeXt and ViTs under varying computational loads and with larger, more complex 
datasets. This would provide further insights into model robustness and behavior in more demanding scenarios like 
real-world situations where model efficiency is critical. 
Another direction could involve optimizing these models for real-time sign language recognition. This does not only 
involve refining the model for speed and accuracy but also ensures the robustness of the model in dynamic 
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environments. Future research could involve developing techniques to reduce latency and altering the models to be 
able to process video data, thus enabling their use in practical settings such as live translation for the deaf 
community. 
The most exciting prospect lies in the cross-cultural adaptability of models where the goal would be to train a 
universal sign language recognition system capable of understanding multiple sign languages. This would require 
addressing challenges such as variability in sign vocabulary, syntax, and usage, making this endeavor difficult but 
one that is highly impactful as an accessibility application 
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