

P. Dhivakar et al, International Journal of Computer Science and Mobile Applications,

Vol.1 Issue. 6, December- 2013, pg. 1-10 ISSN: 2321-8363

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com 1

Dual Sorting Algorithm Based on Quick Sort

1P. Dhivakar, 2G. Jayaprakash
1PG Student, 2PG Student, Department of CSE

M. Kumarasamy College of Engineering (Autonomous), Karur, TamilNadu, India
dhivakarit92@gmail.com

bloomingwithjp@gmail.com

Abstract--- In growing computer science world, a sorting algorithm is an efficient algorithm which performs an important
task that puts elements of a list in a certain order or arranges a collection of items into a particular order (i.e. either ascending
or descending order. Sorting the data element has been developed to arrange the array values in various ways for a database.
For example, sorting will order an array of numerical data’s from lowest to highest or from highest to lowest, or arrange an
array of strings or characters into alphabetical order. We are proposing a dual sorting algorithm based on the Quick Sort. In
that First element taken as pivot element one and last element taken as pivot element two. The Sorting required at least two
elements. It will start from the second element. Our proposed approach have compared with the existing sorting algorithm for
Best case, Worst case, Average case, it provided the better results.

Keywords- Dual Sorting Algorithm; Swapping; Average case; Best case; Worst Case

I. INTRODUCTION
Sorting is any process of regulating items according to a certain sequence or in different sets, and therefore, it has
been categorized into two things.

1. Ordering: arranging or regulating items in some ordered sequence,
2. Categorizing: grouping and labeling items with similar properties together (by sorts).

In computer science, sorting is one of the most extended researched subjects because of the need to speed up the
operation on thousands, billions or millions of records during a search operation. Most simple sorting algorithms
involve two steps which are compare two items and swap two items or copy one item. It will continue to executing
over and over until the data is sorted. Because sorting is important to optimizing the use of other algorithms in
computer science such as binary search or linear search. It has been the subject of wide research in computer
science, and some very difficult methods have been developed. Each method of sorting algorithm has different cases
of performance, they are worst case, when the integers are not in order and they have to be swapped at least once.
The term best case is used to describe the way an algorithm behaves under optimal conditions. For example, the best
case for a simple linear search on an array occurs when the desired element is the first in the list. Average case is
similar to worst case, but in average case, the integers are not in order. Computational complexity defined in terms
of number of swaps. Sorting methods perform various numbers of swaps in order to sort a data. Memory usage is
also a factor in classify the sorting algorithms.

 Sorting algorithms are sometimes characterized by big O notation in terms of the performances that the
algorithms yield and the amount of time that the algorithms take, where n is integer. Big O notation describes the
limiting behaviour of a function when the argument tends towards a particular value or infinity, usually in terms of
simpler functions. Big O notation allows its users to simplify functions in order to concentrate on their growth rates.
The different cases that are popular in sorting algorithms are O(n) is fair, the graph is increasing in the smooth path.
O(n^2): this is inefficient because if we input the larger data the graph shows the significant increase. It means that
the larger the data the longer it will take. O(n log n): this is considered as efficient, because it shows the slower pace

P. Dhivakar et al, International Journal of Computer Science and Mobile Applications,

Vol.1 Issue. 6, December- 2013, pg. 1-10 ISSN: 2321-8363

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com 2

increase in the graph as we increase the size of array or data.

Name Average
Case

Worst Cast Stable

Bubble Sort O(n^2) O(n^2) Yes

Insertion
Sort

O(n^2) O(n^2) Yes

Merge Sort O(n log n) O(n log n) Yes

Quick Sort O(n log n) O(n^2) No

Cockatail
Sort

O(n^2)

O(n^2) Yes

Selection
Sort

O(n^2) O(n^2) No

Dual Sort O(n log n) O(n^2) No

II. RELATED WORK
Bubble Sort It is a straightforward and simple method sorting data that is used in computer science. The algorithm
starts at the beginning of the data set. It compares the first two elements, and if the first is greater than the second, it
swaps them. It continues doing this for each pair of adjacent elements to the end of the data set. It then starts again
with the first two elements, repeating until no swaps have occurred on the last pass.

Insertion sort

 It is a simple sorting algorithm that is relatively efficient for small lists and mostly-sorted lists, and often is used as
part of more sophisticated algorithms. It works by taking elements from the list one by one and inserting them in
their correct position into a new sorted list. In arrays, the new list and the remaining elements can share the array's
space, but insertion is expensive, requiring shifting all following elements over by one

Selection sort

It is a sorting algorithm, specifically an in-place comparison sort. It has O(n2) complexity, making it inefficient on
large lists, and generally performs worse than the similar insertion sort. Selection sort is noted for its simplicity, and
also has performance advantages over more complicated algorithms in certain situations.

Shell sort

Shell sort was invented by Donald Shell in 1959. It improves upon bubble sort and insertion sort by moving out of
order elements more than one position at a time. One implementation can be described as arranging the data
sequence in a two-dimensional array and then sorting the columns of the array using insertion sort. Although this
method is inefficient for large data sets, it is one of the fastest algorithms for sorting small numbers of elements.

 Quick sort

Quick sort is a divide and conquer algorithm which relies on a partition operation: to partition an array, we choose
an element, called a pivot, move all smaller elements before the pivot, and move all greater elements after it. This
can be done efficiently in linear time and in-place. We then recursively sort the lesser and greater sub lists. Efficient

P. Dhivakar et al, International Journal of Computer Science and Mobile Applications,

Vol.1 Issue. 6, December- 2013, pg. 1-10 ISSN: 2321-8363

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com 3

implementations of quick sort (with in-place partitioning) are typically unstable sorts and somewhat complex, but
are among the fastest sorting algorithms in practice. Together with its modest O(log n) space usage, this makes
quick sort one of the most popular sorting algorithms, available in many standard libraries. The most complex issue
in quick sort is choosing a good pivot element; consistently poor choices of pivots can result in drastically slower
O(n²) performance, but if at each step we choose the median as the pivot then it works in O(n log n). Merge sort It is
a comparison-based sorting algorithm. In most implementations it is stable, meaning that it preserves the input order
of equal elements in the sorted output.

Cocktail sort

Also known as bidirectional bubble sort, cocktail shaker sort, shaker sort (which can also refer to a variant of
selection sort), ripple sort, shuttle sort or happy hour sort, is a variation of bubble sort that is both a stable sorting
algorithm and a comparison sort. The algorithm differs from bubble sort in that sorts in both directions each pass
through the list. This sorting algorithm is only marginally more difficult than bubble sort to implement, and solves
the problem with so-called turtles in bubble sort

III. PROPOSED SYSTEMS
A . System model

 Our proposed approaches using Dual sorting algorithm based on the Quick sort. In that we are taking two pivot
elements. First element as a pivot element one and last element as a pivot element two. First we have compare the
two pivot element. If the pivot element one is grater then the pivot element two means swapping operation has been
performed.

We can start sorting from the second element. If the pivot element one is compared with the second element. If the
pivot element one is greater than the second element means the swapping operation has been performed otherwise It
will compare to the pivot element two. It will larger than the second element. Then it will not perform any operation
otherwise It will perform swapping operation. So each iteration at least two element was started. It will reduce the
number of iteration. Consider as the following algorithm

Algorithm 1: Dual Sorting Algorithm

Requirement: Getting the input from the user that should be stored into the array
1. Selecting the first element as an pivot1
2. And selecting the second element as an pivot2
3. To comparing the pivot1 and pivot2
4. If pivot1> pivot2
5. Then perform swap(pivot1, pivot2)
6. else
7. Continue from the second element. Assigning the second position to variable i
8. To compare the ith position element to the pivot1
9. If(pivot1> ith element)
10. Then perform swapping operation
11. else
12. compare to the second pivot element
13. if(pivot2< ith element)
14. Then perform swapping operation
15. end if
16. end if
17. incrementing the ith positon value
18. goto step8

P. Dhivakar et al, International Journal of Computer Science and Mobile Applications,

Vol.1 Issue. 6, December- 2013, pg. 1-10 ISSN: 2321-8363

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com 4

19. perform until the last element
20. end if
21. stop the process

Algorithm Description
In above algorithm taking the first element as a pivot element one (p1) and last element as a pivot element two(p2).
We compare the P1 and P2. If P1 is greater than the P2 means swapping operation performed.

And second element position is the ith position. And the second element compared with the P1 if p1 is greater than
the ith position element means swapping operation performed

otherwise it will compare with the p2 element. if p2 element greater than ith position element means swapping
operation performed. It will continue until the p1 position is higher than the p2 position.

Example:
Consider as a following elements going to sort such as 94, 24, 96, 47, 84, 36, 39, 72 first element 95 compared with
72. (95> 72) it will perform swapping operation. And continue with second element 24. It will compare with 72. 72
is greater than 24. It will perform swapping operation. And continue with 96. It is not greater than 24, so it will
compare with 95. 96 is greater than 95. It will perform swapping operation.
In step4, the element 47 compared with element 24. 24 is smaller than the 47, so it will compare to the element 96.
96 greater than 47. Does not perform any operation and move to the next position. The element 84 compare with the
element 24. 24 smaller than the 84. It will compare with the 96. 96 is greater than the 84. It will does not perform
any operation and move to the next position. 36 compared with 24. 24 smaller than 36 so it will compare with 96.
96 greater than 36. It will not perform any operation. And move to the next position. 39 compare with 24 and does
not perform any operation.
 In Iteration2 starting with second element as pivot1 and previous to the last element as a pivot2 the same
procedure continued. Until reach the pivot2 position.

P. Dhivakar et al, International Journal of Computer Science and Mobile Applications,

Vol.1 Issue. 6, December- 2013, pg. 1-10 ISSN: 2321-8363

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com 5

 Iteration 1:
Steps 95 24 96 47 84 36 39 72
Step1 72 24 96 47 84 36 39 95
Step2 24 72 96 47 84 36 39 95
Step3 24 72 96 47 84 36 39 95
Step4 24 72 95 47 84 36 39 96
Step5 24 72 95 47 84 36 39 96
Step6 24 72 95 47 84 36 39 96
Step7 24 72 95 47 84 36 39 96
Step8 24 72 95 47 84 36 39 96
Step9 24 72 95 47 84 36 39 96
Step10 24 72 95 47 84 36 39 96
Step11 24 72 95 47 84 36 39 96

Iteration 2:
Steps 24 72 95 47 84 36 39 96
Step1 24 39 95 47 84 36 72 96
Step2 24 39 95 47 84 36 72 96
Step3 24 39 95 47 84 36 72 96
Step4 24 39 72 47 84 36 95 96
Step5 24 39 72 47 84 36 95 96
Step6 24 39 72 47 84 36 95 96
Step7 24 39 72 47 84 36 95 96
Step8 24 39 72 47 84 36 95 96
Step9 24 36 72 47 84 39 95 96

Iteration 3:
Steps 24 36 72 47 84 39 95 96
Step1 24 36 39 47 84 72 95 96
Step2 24 36 39 47 84 72 95 96
Step3 24 36 39 47 84 72 95 96
Step4 24 36 39 47 84 72 95 96
Step5 24 36 39 47 84 72 95 96
Step6 24 36 39 47 72 84 95 96

Iteration 5:
Steps 24 36 39 47 72 84 95 96

P. Dhivakar et al, International Journal of Computer Science and Mobile Applications,

Vol.1 Issue. 6, December- 2013, pg. 1-10 ISSN: 2321-8363

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com 6

Flow chart Representation

P. Dhivakar et al, International Journal of Computer Science and Mobile Applications,

Vol.1 Issue. 6, December- 2013, pg. 1-10 ISSN: 2321-8363

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com 7

IV. PERFORMANCE EVALUATION
This Section presents the program results and performance analysis of the proposed algorithms. Further this factor
affects the worst case, Base case, average case analysis and Number of swapping.
Execution results
 The program execution has been carried out using a c++ programming Language. First we are taking 100 Random
numbers for reading. We are calculating number of swapping occurred during the sorting process. The following
output 100 numbers of elements

And we are taking reading for 1000 number of elements using the random function. We are calculating number of
swapping.

And we are taking reading for 10000 number of elements using the random function. We are calculating number of
swapping.

P. Dhivakar et al, International Journal of Computer Science and Mobile Applications,

Vol.1 Issue. 6, December- 2013, pg. 1-10 ISSN: 2321-8363

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com 8

Table: Comparison of the number of swaps relates to several sorting algorithms

Sort N=100 N=1000 N=10000
Bubble
Sort

7890 879604 98530146

Selection
Sort

4913 267548 35648754

Insertion
Sort

3146 243578 23453685

Cocktail
Sort

4897 574970 45367598

Dual Sort

750 83995 7566718

In following graph comparison to the number of element taken and number of swapping.

P. Dhivakar et al, International Journal of Computer Science and Mobile Applications,

Vol.1 Issue. 6, December- 2013, pg. 1-10 ISSN: 2321-8363

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com 9

V. CONCLUSION
Base on our experiment, the charts displaying the relationship between various sorting and number of swapping
show that the Dual sort is the fastest algorithm compare to Bubble sort, Insertion sort, Selection sort, Quick Sort and
Cocktail sort. It also prove the literature about big O notation, that O(n log n) is considered efficient, because it
shows the slower increase in the graph as we increase the size of the array. The diagram shows that Dual sort is
efficient for both small and large integers. Although the worst case, it makes O(n^2) comparison, typically, Dual
sort is significantly faster in practice than other O(n log n) algorithms. On the other end of the efficiency scale, the
Bubble sort is notoriously slow but is conceptually the simplest of the sorting algorithms and this that reason is a
good introduction to sorting. In terms of swapping, the Bubble sort performs the greatest number of swaps because
each element will only be compared to adjacent elements and exchanged if they are out of order. Cocktail sort is a
slight variation of bubble sort. The table shows that the Cocktail sort performs fewer swaps than the Bubble sort.
The reason for this is that bubble sort only passes through the list in one direction and therefore can only move items
backward one step each iteration. Insertion Sort sorts small array fast, but big array very slowly. Quick sort is fastest
on average. Very slow sorting occurs sometimes due to unbalanced partition.. Merge sort is stable in that two
elements that are equally ranked in the array will not have their relative positions flipped.

IV. REFERNCES

1. The Art of Computer Programming, Volume 3: Sorting and Searching, Third Edition. Addison–Wesley, 1997.
ISBN 0-201-89685-0. Pages 138–141 of Section 5.2.3: Sorting by Selection.

2. Sorting by Insertion", The Art of Computer Programming, 3. Sorting and Searching (second ed.), Addison-
Wesley, 1998, pp. 80–105, ISBN 0-201-89685-0.

3. Sedgewick, Robert (1983), "8", Algorithms, Addison-Wesley, pp. 95ff, ISBN 978-0-201-06672-2.

4. Ciura, Marcin (2001). "Best Increments for the Average Case of Shellsort". In Freiwalds, Rusins. Proceedings of
the 13th International Symposium on Fundamentals of Computation Theory. London: Springer-Verlag. pp. 106–
117. ISBN 3-540-42487-3.

5. David M. W. Powers, Parallelized Quicksort and Radixsort with Optimal Speedup, Proceedings of International
Conference on Parallel Computing Technologies. Novosibirsk. 1991.

6. Paul E. Black and Bob Bockholt, "bidirectional bubble sort", in Dictionary of Algorithms and DataStructures
(online), Paul E. Black, ed., U.S. National Institute of Standards and Technology. 24 August 2009. (accessed: 5 Feb
2010)

P. Dhivakar et al, International Journal of Computer Science and Mobile Applications,

Vol.1 Issue. 6, December- 2013, pg. 1-10 ISSN: 2321-8363

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com 10

Authors Profile

Mr. P. Dhivakar doing Final year M.E CSE in M.Kumarasamy college of Engineering (Autonomous),
Karur. He was completed his B.TECH IT in M.Kumarasamy College Of Engineering, Karur in
2012. His interested areas are Wireless Sensor Networks, Data Structure and Algorithms, Network
Security.

Mr.G.Jayaprakash doing first year M.E CSE in M.Kumarasamy College of Engineering (Autonomous),
Karur. He was completed his B.TECH IT in M.Kumarasamy College Of Engineering, Karur in 2012.
His interested areas are Data Structures and Algorithms, Wireless Sensor Networks.

