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Abstract 

This research paper aims to explain an empirical investigation concerning the correlation between the length of an 

intents.json file and the runtime of NLTK (Natural Language Toolkit) and Tensor Flow algorithms in Python, 

tailored towards chatbot development. By examining the runtime efficiency based on various intents.json file sizes, 

the study aims to ascertain the impact of file length on algorithm performance through the utilization of a least 

squares regression line. Experimental analysis reveals a compelling linear relationship between intents.json length 

and training runtime, indicative of an O (N) runtime complexity. This research provides practical implications for 

developers seeking to enhance the runtime performance of chatbot systems by providing them with a baseline of 

runtime for dynamic chatbot creation. 

Keywords: Computer science; Artificial intelligence; Machine learning; NLTK, Tensor flow; Runtime complexity; 

Algorithm runtime. 
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1. Introduction 
Algorithms are paramount to any digital instrument. With the contemporary deluge of chatbots - with over 1.4 

billion users worldwide - how humans interact with technology has been revolutionized [1]. While extensive 

companies with considerable resources frequently develop these chatbots, aspiring computer scientists have begun 

to dabble in assembling their chatbot systems.  

Although a plethora of aspiring teens and adults run into issues compiling neural networks and consequently turn to 

pre-made Python modules that make compiling neural networks much faster.  

Python offers prevalent and efficient machine learning models, with Tensor Flow as the industry standard [2]. 

However, for academic purposes, NLTK, a natural language processing module, is a suitable alternative for neural 

network development [3].  

Similar to neural network development, there are artificial intelligence and machine learning. Although artificial 

intelligence and machine learning are used interchangeably, some distinct differences exist.  

Artificial intelligence refers to the broader way of viewing a “simulation” of human intelligence onto computers. It 

utilizes various techniques: computer vision, natural language processing models, machine learning, etc. In short, it 

tries to emulate human intelligence in order to interact with their environment through the usage of algorithms.  

Machine learning is a subset of artificial intelligence that deals with the development of both algorithms and models 

that allow computers to make predictions and decisions based on those predictions. Once the model is trained, it can 

be used for the entirety of the program without fail or explicit programming. They are dynamic systems: improving 

their performance through data and processing.  

Like machine learning, natural language processing models are another subset of artificial intelligence. This subset 

encompasses computers being able to “speak” like a human: interpretation and generation of the human language. It 

combines techniques from linguistics and artificial intelligence to process and analyze text data in order to 

commonly create question-answering systems such as chatbots [4].  

An algorithm is a step-by-step set of instructions designed to solve specific problems. In the case of this study, it is 

used to process and analyze data before making predictions based on the given data. Given the increased importance 

of chatbots in the real world with new technologies such as Chat GPT and slews of innovation within the field, this 

paper will study the relationship between NLTK (Natural Language Processing Module) and Tensor Flow 

algorithms based on the data that it processes.  

This study investigates the relationship between intents.json length and the Tensor Flow/NLTK runtime in order to 

create a baseline for the efficiency of chatbot information creation. An intents.json file is utilized in the context of 

NLP systems in the field of virtual assistants. It is a configuration file that defines the various intents/ purposes 

behind user inputs or queries that the system can respond to. Each intent in the file is defined as an object with 

specific properties. Specifically, it has a unique identifier, examples (training data), actions, parameters, and 

contextual information. It is used in conjunction with dialogue management systems to build conversational AI 

systems in order to respond to user inputs more effectively. An “intents.json” is simply the standard naming 

convention.  

The main significance of this paper lies in the fact that it can provide insights into the runtime required for training 

chatbot models based on machine learning. This can provide organizations with the ability to properly allocate their 

resources (processing, power, memory, money, etc.) based on the size of the data that they are processing. This can 

help optimize their infrastructure and improve their resource management for testing chatbot development. This 

research can serve as a baseline to help provide guidance on potential bottlenecks in the runtime of chatbot 

implementations - aspiring to enable more robust and efficient chatbot systems. 
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2.  Methods 
This controlled observational research design utilized a plethora of Python modules: NLTK, numpy, TFLearn, 

Tensor Flow, random, JSON, and pickle. Controlled observational research was the most optimal approach for the 

research objectives as it allowed for higher variable control, such as parameters, patterns, and byte size, and 

observes the output runtime in order to determine the relationship between the byte size and the runtime.  

In the Natural Language Toolkit library, the program to test the runtimes utilized the Lancaster Stemmer, which 

reduces words to their root form. Creating and utilizing an instance of the Lancaster Stemmer is vital for the natural 

language processing model, which simplifies text classifications and information retrieval. It allows the machine 

learning algorithms to run without “worrying” about the core meaning of words. Utilizing training data from a 

version that removes the dimensionality of the user input makes the program more efficient by treating similar 

words as identical, thus removing the generalization and developing the efficiency of the models.  

Numpy holds a plethora of important mathematical operations that were crucial in the design of this program. Array 

creation for training data and output labels was completely taken care of by numpy. Numpy was also employed in 

the manipulation of these arrays, transforming the output data and providing efficient computation and matrix 

operation. The study integrated numpy, mainly its diverse set of arrays, with Tensor Flow to serve as input data for 

training the machine learning models.  

TFLearn is a deep learning library that is built on top of Tensor Flow that provides abstractions and utilities to both 

build and train neural networks. Tensor Flow, the crux of this research, on top of being a popular deep learning 

framework, has provided the design for this program with the ability for neural network implementation. The 

Lancaster Stemmer has four steps: initialization, suffix removal, stemming rules, and termination condition. It 

reduces words to their base form [5]. It defined the structure of the neural network model and trained it with data 

from the arrays, allowing for efficient computation. Since it utilizes both the CPU and GPU, Tensor Flow algorithms 

accelerate training processing by utilizing concepts such as parallel processing and optimization techniques to 

handle large-scale data potentially. In short, Tensor Flow allows the program to use incredibly large file lengths with 

the intents.json input for testing without causing additional errors. 

Python’s random module was a small but significant factor in this experiment, as it added a way for the chatbot to 

provide varied responses during its interactions, which is crucial for testing different responses. The JSON library 

was utilized for reading data from the intents.json file, which contained structured data defining intents, patterns, 

and responses for the chatbot. This allowed the program to extract and utilize the necessary information for training 

and using the chatbot.  

Pickle sped up the process of training data. First, it allowed for object serialization - forcing Python objects into 

files. It provided me with the opportunity to load data from files in a binary format. It would read and write data in 

an efficient manner by reprocessing code over and over for each implementation. 

By opening the intents.json file, which contains the intents and patterns for the chatbot, it loads the content into a 

variable. If there is no preprocessed data available, the model reprocesses the data from the intents file and serializes 

it into a pickle file. Next, process the data from the file by extracting the words, labels, training and output data, and 

patterns provided.  

We then load the processed data into numpy arrays and integrate it with Tensor Flow through the binaries in the 

pickle file. To reset the runtime, the program would reset Tensor Flow’s default graph, which clears any previously 

defined operations and allows for complete retraining of the data. The program also defines the neural network 
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architecture using TFLearn with a softmax function and a DNN model. The model utilized one-thousand epochs 

(amount of iterations) and a batch size of eight [6]. The epochs determined the runtime, and 1000 is a common 

baseline for epochs in machine learning literature [6]. The batch size refers to the number of data points processed 

through a neural network during training. The dataset is divided into a smaller subset of batches, and the batch size 

determines the size of the subsets. Eight is relatively small, which helps with memory and computational efficiency. 

The model was trained based on the data and saved in a TFLearn index, Meta, and data. Finally, the program 

converted the user input into a bag-of-words representation of the code in the form of a numerical vector from a 

predefined vocabulary [7]. The program tokenizes the sentence and stems the words in the sentence, comparing 

them to the predefined vocabulary and checking for the presence of specific words to be fed into the chatbot model 

to predict a suitable response based on learned patterns.  

The study design was built around the described program. Other than the downloaded Python modules, materials 

utilized included the lightweight data interchange format with a pre-made corpus of intents and patterns in the 

Python software’s ecosystem. Furthermore, in the environmental setup, the experiments were run on Python 3.10.5 

on an Alien ware Aurora R7 with an Intel(R) Core(™) i7-8700 CPU @ 3.20 GHz (3.19 GHz usable), 16GB 

(15.8GB usable) RAM with Windows 10 Home, and a GTX 1080 Ti (11121 MB VRAM). The Python code was run 

in Sublime Text. 

For measurement, the study tested three different byte sizes in three different trials, finding the runtime of how long 

it took to create and initialize the newly processed data into the chatbot model. The IDE Sublime Text has an inbuilt 

function that outputs the runtime of a program, which is what the study utilized to measure timing.  

I utilized a linear regression model that examines the relationship between a set of independent and dependent 

variables that is represented in the form y=bx+c where y is the dependent variable, b is the slope, c is the constant, 

and x is the independent variable. The model examines the ability of the independent variables to predict the set of 

dependent variables - providing a good indication of which variables are significant in relation to impacting the 

other. This was important as it was possible that the entirety of this paper was built on a false pretense that the JSON 

length had nothing to do with the runtime, meaning that utilizing this model would tell me both the falsehood of this 

claim and if the claim was true, it would quantify it. Using a linear regression model helps identify if JSON length 

has an impact on run time. If so, it helps quantify the impact. 

To create this linear regression model, the experiments were run on three different data sets of varying sizes: small, 

regular, and large. The small dataset was created as there are a lot of limitations to runnable byte-size maxes in the 

real world, and it would deal more with utilizing chatbots for more niche purposes. The “regular” data set included 

an average amount of data and was used to deal more with the application interface as it provided a byte size that 

was consistent with highly-specific application chatbots. The larger byte size included an abnormally large amount 

of data and was tested to check if the runtime complexity was parabolic or linear and if the linearity of the byte size 

had an effect on runtime performance. 

 

3. Results 
After compiling the code and the results, this study produced a least squares regression line of ŷ=914.90212, x-

1291.32081. The y-value, in this case, is the byte size of the intents.json file; the x-value is the runtime in seconds. 

To confirm this data, the study tried the following numerical values in the training. The program compiled three 

different byte sizes (7547 bytes, 13248 bytes, and 28496 bytes) and got three different runtimes (9.75s, 15.77s, and 

32.59s, respectively). Repeated trials with these byte sizes resulted in the same runtimes since the program is a 
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deterministic algorithm.  

Deterministic algorithms produce the same result given the same input and conditions, providing a consistent 

runtime [8]. The algorithm follows a fixed set of steps with no elements of probability or randomness, allowing for 

the same execution time. In a more nuanced sense, the process of training the chatbot using TFLearn and Tensor 

Flow followed a fixed set of steps.  

The model training process involved processing the input data, creating/configuring the neural network architecture, 

specifying the number of epochs (1000) and batch size of eight, and fitting the model to the training data. These 

deterministic steps were combined with the bag-of-words representation, which simply converted user input into 

numerical vectors, which is another deterministic process. It tokenized the input sentence, applied stemming (using 

Lancaster Stemming in NLTK), and compared the words to a predefined vocabulary, ultimately producing the same 

results given the same input and conditions. In the Table 1 and Figure 1, the numbers are completely consistent 

for any trial. 

Table 1. Runtime analysis for varying byte size in the computational model. 

intents.json Runtime (Trial 1) Runtime (Trial 2) Runtime (Trial 3) 

7,547 bytes 9.75s 9.75s 9.75s 

13,248 bytes 15.77s 15.77s 15.77s 

28,496 bytes 32.59s 32.59s 32.59s 

Figure 1. Graphs Generated by Google Drawings Graph Function that Show the Linear Regression Result of the 

Data. 
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I plotted one of each trial of each byte size respectively as the data was very monotonous. The sum of the runtimes 

(58.11), the sum of the byte sizes (49,291), mean of the runtimes (19.37), the mean of the byte sizes (16430.33), the 

sum of the squares for the x (ssx = 280.2728), and the sum of the products (sp = 256422.18) were all utilized to 

calculate the LSRL (least squares regression line). The slope value is SPISSx = 256422.18/280.27, which nets us a 
value of 914.90212, and a value is My-bMx = 16430.33 - (914.9*19.37) = -1291.32081

4. Discussion

The study sought to investigate and quantify the affinity between the byte size of the intents.json file and the 

machine learning compilation runtime. This examination gauged the compilation runtime of three different data sets 

of deviating sizes to determine whether the byte size particularly influenced the runtime period. 

The results of the analysis indicate that while the data does not fit a strictly linear behavior, assuming a linear 

relationship between the byte size and the runtime due to the program's O (N) runtime complexity is allowed.  

O (N) implies that the runtime of the algorithm grows approximately linearly with the size of the input, and in this 

case, the data processing steps, stemming of words and bag-of-words representation contribute to this complexity.  

The analysis further indicates a possibility of an error in the runtime check in Sublime text, as the slope-intercept 

line equation from two points - that being (9.75,7547) and (32.59,28496) is y=917.2066549912433x-

1395.76488616. 

This is nearly identical to the least squares regression line, which means that there is a possibility that it is entirely 

linear, and there was some regulation error. Either way, the research found the data to be non-linear, so external 

factors must be considered. 

Note that the non-linearity observed in the data could be attributed to heterogeneous data. While O (N) provides an 

upper-bound estimate for runtime complexity, external factors such as nested loops or recursive calls in the code 

may introduce variations and impact the actual runtime [9]. 

One limitation of this study is the relatively small sample size of both the computers used and the intents.json file 

sizes. Generalizing these findings would benefit from larger and more diverse samples in future studies. 

Additionally, exploring the effects of CPU and GPU overclocking, upgrading, or downgrading on timing could 

provide valuable insights into the performance of the chatbot model.  

It is entirely possible that the amount of time it takes to train each model in the Tensor Flow DNN function is 

dependent on the specifications of the clone's computer. Replicating this research would require the user to utilize 
the same computer specifications used in this study, and further research could be taken to find whether or not the 
claim of the runtime being dependent on specifications is true. Furthermore, this study relied on deterministic 

algorithms and a bag-of-words representation for data processing. However, contextual data and quality issues in 

natural language processing were not thoroughly studied, which may introduce additional complexities and 

variations in the runtime performance. 

Despite these limitations, the present study serves as a baseline for understanding the runtime complexity of the 
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chatbot model in the context of artificial intelligence and machine learning algorithms. It contributes to the existing 

body of knowledge and highlights the importance of considering algorithm runtime in the development and 

optimization of natural language processing systems. 

In conclusion, the findings of this study suggest a linear relationship between the byte size of the intents.json file and 

the runtime of the chatbot model, as indicated by the O (N) runtime complexity. However, the non-linearity 

observed in the data underscores the influence of heterogeneous data and external factors on the actual runtime 

performance. Future research should aim to address the limitations of this study by incorporating larger sample byte 

sizes, exploring hardware-related factors, and considering the impact of contextual data on the performance of 

chatbot models. By expanding on these different research directions, people can further enhance the understanding 

and optimization of chatbot models in real-world applications [10]. 

5. Conclusion
As is evident from the data and the graphs, the data does not fit a strictly linear behavior, but the assumption of 

linearity due to the program being of O (N) runtime is accredited the non-linearity to heterogeneous data. In the field 

of computer science, O (N) refers to the runtime complexity of an algorithm, and in this case, specifically the 

stemming of the words, the bag of words, and the data processing.   

O (N) indicates that the runtime of the algorithm grows approximately linearly with the size of the input. O (N) is a 

worst-case runtime complexity (upper-bound), and some external factors in the code through nested loops or 

recursive calls obviously have some other unforeseen impact on the runtime. A limitation of the present study was 

its relatively small sample size of both computers to use and intents.json sizes.  

Attempting to generalize these findings, the program and thus study design had to opt for more utilized Python 

models. Hence, larger and more varied samples for future studies would be very beneficial, and it would also be 

productive to see if CPU and GPU overclocking, upgrading, or downgrading have any effect on the timing.  

Sadly, the only cross-validation technique used was running the simulation multiple times, which means there is a 

caveat in the breadth and depth of the data utilized to answer and confirm the hypothesis. Same-sized files also 

might perform differently depending on contextual data - which was not studied in this research, which potentially 

botches the data. Quality issues, natural language processing bias, and computational constraints plagued this study, 

somewhat limiting the scope. However, this study can stand on its own to serve as a baseline for natural language 

process development. These results add to the body of knowledge of algorithm runtime for artificial intelligence and 

highlight how machine learning algorithms run. 
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from an intents.json file
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