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Abstract 
In this paper, we present a comprehensive study on semantic segmentation with the Pascal VOC dataset. Here, we 
have to label each pixel with a class which in turn segments the entire image based on the objects/entities present. 
To tackle this, we firstly use a Fully Convolution Network (FCN) baseline which gave 71.31% pixel accuracy and 
0.0527 mean IoU. We analyze its performance and working and subsequently address the issues in the baseline with 
three improvements - a) cosine annealing learning rate scheduler (pixel accuracy: 72.86%, IoU: 0.0529), b) data 
augmentation (pixel accuracy: 69.88%, IoU: 0.0585) c) class imbalance weights (pixel accuracy: 68.98%, IoU: 
0.0596). Apart from these changes in train- ing pipeline, we also explore three different architectures - a) Our 
proposed model- Advanced FCN (pixel accuracy: 67.20%, IoU: 0.0602) b) Transfer Learning with ResNet (Best 
performance) (pixel accuracy: 71.33%, IoU: 0.0926) c) U- Net (pixel accuracy: 72.15%, IoU: 0.0649). We observe 
that the improvements help in greatly improving the performance, as reflected both, in metrics and segmentation 
maps. Interestingly, we observe that among the improvements, dataset augmentation has the greatest contribution. 
Also, note that transfer learning model performs the best on the pascal dataset. We analyses the performance of 
these using loss, accuracy and IoU plots along with segmentation maps, which help us draw valuable insights about 
the working of the models. 
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1. Introduction
Semantic segmentation is a fundamental problem in computer vision that involves assigning a la- bel to every pixel 
in an image. The task is essential for a wide range of applications, including autonomous driving, robotics, and 
medical image analysis. The ability to accurately segment images can provide critical information for decision-
making, such as identifying objects of interest or detecting anomalies in medical images. 

To achieve high accuracy in semantic segmentation, deep learning-based methods have been widely used. However, 
training deep neural networks is challenging due to the vanishing gradient problem, which makes it difficult to 
optimize the network’s parameters. To overcome this problem, several techniques have been proposed, such as 
Xavier weight initialization and batch normalization. 

Xavier weight initialization is a technique used to initialize the weights of a neural network such that the variance of 
the outputs of each layer is the same as the variance of the inputs. This initialization technique helps to prevent the 
vanishing or exploding gradients problem, which can occur when the weights are initialized with values that are too 
small or too large. 

Batch normalization is another technique used to improve the performance of deep neural networks. It normalizes 
the inputs to each layer in a mini-batch, which helps to reduce the internal covariate shift, making the optimization 
process more stable and faster. 

In this paper, we start with a Fully Convolution Network (FCN) baseline, which achieves a pixel accuracy of 71.3% 
and a mean IoU of 0.0527. To improve upon the baseline, we implement three modifications in the training pipeline, 
including a cosine annealing learning rate scheduler, data augmentation, and class imbalance weights, resulting in 
better pixel accuracy and IoU scores. We also explore three different architectures, including our proposed 
Advanced FCN, Transfer Learning with ResNet, and U-Net. We observe that dataset augmentation has the greatest 
contribution to the improvement in performance. Interestingly, transfer learning with Res Net performs the best on 
the Pascal dataset. We evaluate the performance of these models using loss, accuracy, and IoU plots along with 
segmentation maps, which provide valuable insights about the working of the models. Overall, our study provides 
important insights into the challenges and approaches to improving semantic segmentation performance on the 
Pascal VOC dataset. 

2. Related Work
Semantic segmentation is an essential task in computer vision that involves assigning a label to every pixel in an 
image. The Pascal VOC dataset is a widely used benchmark for evaluating semantic segmentation algorithms. In 
this section, we will discuss some of the related works in semantic segmentation with Pascal VOC dataset and also 
focus on the rare class problem. 

Semantic Segmentation with Pascal VOC dataset Fully Convolutional Network (FCN) is one of the most widely 
used architectures for semantic segmentation. Long et al. introduced this architecture in 2015, which involves 
converting the fully connected layers of a CNN to convolutional layers to allow the network to accept images of 

http://www.ijcsma.com/


Prakash, S. et al. International Journal of Computer Science and Mobile Applications, Vol 11 Issue 5, May- 
2023, pg. . 

ISSN: 2321-8363 
Impact Factor: 6.308 

(An Open Accessible, Fully Refereed and Peer Reviewed Journal) 

©2023, IJCSMA All Rights Reserved, www.ijcsma.com 

This work is licensed under a Creative Commons Attribution 4.0 International License. 

arbitrary size. FCN has been widely used in various works, such as, where it has achieved state-of-the-art 
performance on the Pascal VOC dataset [1, 2]. 

Transfer learning has also been used in many works to improve the performance of semantic segmentation. One of 
the most popular models used for transfer learning is ResNet, which is a deep neural network that has shown 
remarkable performance in image classification tasks. Zhang et al. used a pre-trained ResNet model and fine-tuned it 
on the Pascal VOC dataset, achieving state-of-the-art performance [3]. 

Another architecture that has shown promising results in semantic segmentation is the U-Net architecture. U-Net is 
an encoder-decoder architecture that consists of a contracting path, which captures the context, and an expansive 
path, which enables precise localization. Ronneberger et al. introduced this architecture in 2015, and it has been used 
in various works such as for semantic segmentation with Pascal VOC dataset [4-6]. 

Rare Class Problem The rare class problem is a significant challenge in semantic segmentation, where some classes 
have very few instances in the training data, making it challenging to learn a reliable classifier for these classes. 
Many works have proposed various solutions to this problem. 

One approach is to use data augmentation techniques to generate more training samples for rare classes [7]. 
Proposed using Generative Adversarial Networks (GANs) to generate synthetic images for rare classes, which 
helped improve the performance of the classifier on these classes. 

Another approach is to use class balancing techniques, such as weighted loss functions, to give more weight to rare 
classes during training [7]. Proposed using a focal loss function that down-weight the loss assigned to well-classified 
examples, reducing the contribution of easy examples to the loss function. 

In summary, semantic segmentation is an essential task in computer vision, and the Pascal VOC dataset is a widely 
used benchmark for evaluating algorithms [8]. FCN, transfer learning, and U-Net are some of the popular 
architectures used for semantic segmentation. The rare class problem is a significant challenge in semantic 
segmentation, and data augmentation and class balancing techniques have been proposed to overcome this problem 
[9]. 

3. Dataset
The PASCAL VOC-2007 dataset is a benchmark dataset for pixel-level semantic segmentation, which includes 
images with pixel wise annotations for 20 object categories plus a background category, making it a total of 21 
classes. The dataset contains 209 images for training and validation, and an additional 210 images for testing and 
212 images for validation which were collected from real-world scenes with diverse backgrounds, orientations, and 
lighting conditions.  

The 20 object categories in the dataset include aero plane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining 
table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, and TV/- Monitor. The dataset is intended for 
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recognizing and localizing objects in complex scenes without prior knowledge about the number and location of the 
objects in the image (Figure 1). 

Figure 1: Sample Dataset Images. 

The pixel wise annotations in the dataset provide a dense labeling of the image, where each pixel is labeled with the 
corresponding object class. This information is used to train supervised learning algorithms for pixel-level semantic 
segmentation, which aims to predict the object class of each pixel in the image. The dataset has been widely used as 
a benchmark for evaluating the performance of various state-of-the-art methods for semantic segmentation [10]. 

4. Methods
In this section we discuss the architectural details of our models and its implementation and experimental steps. It 
shows the technical details and describes each layer, its parameters and activations applied during the training 
procedure. We briefly state the results in this sections which are discussed in detail in the later sections. 

The loss function used in the below subsections is the cross entropy loss function. Cross entropy is often used as a 
loss function for semantic segmentation because it measures the dissimilarity between the predicted probability 
distribution and the true probability distribution of the segmentation masks. It takes into account the fact that the 
predicted probability distribution should assign high probabilities to the correct class labels while penalizing low 
probabilities assigned to incorrect labels. The cross entropy can be defined as: 

1
log( )

1 1

N C
LCE y pij iji jN

∑ ∑= −
= =
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Where N is the total number of pixels, C is the number of classes, yen is the ground truth label of the itch pixel for 
class j, and pig is the predicted probability of the itch pixel belonging to class j. The term − log(pig ) penalizes 
incorrect predictions more severely than correct ones, and the overall loss is averaged over all pixels and classes. 

The metrics used in the paper are Pixel-wise accuracy and Intersection over Union (IOWA). Pixel-wise accuracy 
measures the percentage of correctly classified pixels in the segmentation map, while Iowa measures the overlap 
between the predicted segmentation and the ground truth segmentation. Pixelwise accuracy is often used as a quick 
and simple evaluation metric for segmentation models, but sometimes it can be misleading in cases where there is 
class imbalance, i.e., when some classes have much fewer pixels than others. Iowa is a more reliable metric for 
evaluating semantic segmentation models, especially in the presence of class imbalance. It calculates the ratio of the 
intersection of the predicted and ground truth segmentation to their union. It ranges from 0 to 1, with higher values 
indicating better performance. Pixel accuracy can be defined by: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

where Correctly predicted pixels represents the number of pixels that are correctly classified in the segmentation 
map, and Total number of pixels represents the total number of pixels in the segmentation map. 
IOU can be defined by: 

TP
IoU

TP FP FN
=

+ +

Where TP, FP, and FN are the numbers of true positive, false positive and false negative pixels, respectively, 
determined over the whole validation set. 

4.1. Baseline 
We take our baseline models as a Fully Convolution Network (FCN). A Fully Convolutional Network (FCN) is a 
type of neural network architecture designed for image segmentation tasks. Unlike traditional Convolutional Neural 
Networks (CNNs) that are designed for image classification tasks, FCNs are able to produce pixel-wise 
segmentation masks that identify the different objects in an image. 

The basic building block of an FCN is a convolutional layer, which consists of a set of filters that slide over the 
input image and produce a set of feature maps. Each feature map represents a different aspect of the image, such as 
edges, corners, or textures. In an FCN, the fully connected layers in a traditional CNN are replaced with 
convolutional layers to enable pixel-wise predictions. The final layer of the network is a transposed convolutional 
layer, also known as a deconvolution layer, which up samples the feature maps to the same size as the input image. 
During training, the network is trained to minimize a loss function that measures the difference between the 
predicted segmentation mask and the ground truth mask. The loss function typically used for image segmentation 
tasks is the cross-entropy loss. 
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4.1.1 Parameters 
For our experiment we load datasets using PyTorch’s Data Loader and processes them using number of worker 
processes as 4 and a prefect factor of 2 to improve data transfer speed. The batch size for the data loader is set to 16 
and shuffle is set True to shuffle the data randomly at each epoch. The model is trained for 50 epochs using the 
Adam optimizer with a learning rate of 0.005. The FCN model is defined to have 21 classes, and its weights are 
initialized using a custom initialization function. The model is transferred to either the CPU or GPU device 
depending on availability. The loss function used is either cross-entropy or weighted cross-entropy depending on a 
flag variable (for baseline, normal cross-entropy is used), and early stopping is implemented to monitor model 
performance and prevent overfitting. These parameters would remain the same for all further experiments unless 
stated otherwise. 

The weights are initialized using Xavier uniform distribution, which is a widely used method for initializing the 
weights of neural networks. The bias terms are initialized using a normal distribution because Xavier initialization is 
not applicable for biases. Xavier initialization is a method that tries to ensure that the scale of the gradients flowing 
through the network remains roughly the same across layers. This can help avoid vanishing or exploding gradients 
during training. The method initializes the weights of the layer with random numbers drawn from a uniform 
distribution between the range −(1/sort(n)) and 1/sort(n), where n is the number of inputs to the node We use the 
early stopping algorithm that takes a specified number of rounds of patience, usually 5 to determine when to stop 
training. During training, the model is evaluated on both the training and validation datasets, and the loss, accuracy, 
and IOU (Intersection over Union) are computed and saved for each epoch. The training loop iterates over the Data 
Loader and updates the optimizer gradients using the backpropagation algorithm. The inputs and labels are 
transferred to the same device as the models, and the output is computed using the FCN model. The output is then 
soft axed, and the loss is calculated using the cross-entropy or weighted cross-entropy loss function. The loss is used 
to update the optimizer weights using backpropagation. Finally, the training loop computes and saves the metrics 
and the model’s performance is monitored using the early stopping algorithm. 

4.1.2 FCN Architecture 
The model contains 5 convolutional blocks, each consisting of a convolutional layer, batch normalization, and 
Relook activation function. The FCN module has an input layer that takes a 3-channel image as input. As shown in 
Table 1, the convolutional layers have increasing number of filters, starting from 32 and doubling with each block. 
Each block also has a down sampling factor of 2, resuiting in a feature map with reduced height and width. After the 
fifth convolutional block, there are five DE convolutional blocks with the same architecture as the convolutional 
blocks but with increasing number of filters in the opposite direction. Each block has an up sampling factor of 2, 
resulting in a feature map with increased height and width. 

The final layer of the module is a convolutional layer with a kernel size of 1 that reduces the number of channels to 
the number of output classes. This layer produces a probability map for each pixel in the input image, indicating the 
probability of that pixel belonging to each of the output classes. The forward pass of the FCN module takes an input 
image and applies the convolutional layers followed by the transpose convolutional layers to up sample the feature 
maps. It then passes the result through the final convolutional layer to produce the probability map for each pixel in 
the input image. 
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Table 1. Description of experimental architecture of FCN baseline. 
Layer in-channels out-channels kernel-size padding stride Activation function 
Conv1 3 32 3 1 2 Relook 
Conv2 32 64 3 1 2 Relook 
Conv3 64 128 3 1 2 Relook 
Conv4 128 256 3 1 2 Relook 
Conv5 256 512 3 1 2 Relook 

Deacon 1 512 512 3 1 2 Relook 
Deacon 2 512 256 3 1 2 Relook 
Deacon 3 256 128 3 1 2 Relook 
Deacon 4 128 64 3 1 2 Relook 
Deacon 5 64 32 3 1 2 Relook 

Conv6 32 21 1 0 1 - 

In summary, this experiment takes an FCN model for image segmentation using Pie Torch and trains it on a dataset 
using the Adam optimizer with cross-entropy or weighted cross-entropy loss functions. Early stopping is used to 
monitor performance, and metrics are computed and saved for each epoch. The model’s weights are updated using 
backpropagation, and the model’s device is deterring5 mined based on availability. This implementation 
demonstrates an effective way of training and evaluating image segmentation models using Pie Torch. 

4.2. Improvements over Baseline 
To improve our Baseline, we make the following changes to our training procedure. Note that throughout these three 
improvements, we use the same model as described in 4.1 along with the same training pipeline, except for the 
changes mentioned below. Also, these changes have been applied progressively, one after another. So, each 
successive improvement builds upon the previous one. 

4.2.1 Learning Rate Scheduling 
One of the most effective ways to improve the performance of a deep learning model is to tune its learning rate. A 
constant learning rate may cause the optimization process to get stuck in local miniMac. Instead, we can use a 
learning rate scheduling technique, which gradually reduces the learning rate over time, allowing the model to 
explore more promising regions of the loss surface. We use the cosine annealing learning rate scheduler, which 
gradually reduces the learning rate according to the cosine function of the current epoch and the total number of 
epochs. Historically, this scheduler has been shown to work well in many computer vision tasks. The equation for 
this scheduler is: 

1
( ) (1 cos( ))maxmin min

2 max

Tcur
t

T
η η η η π= + − +  

Where ηt is the learning rate at iteration t, ηmin and ηmax are the minimum and maximum learning rates, Tcur is the 
current epoch, and Tmax is the total number of epochs. The learning rate starts at ηmax and decreases to ηmin over the 
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course of Tmax epochs, following a cosine annealing schedule. Across our experiments, we use different values for 
Tmax, keep ηmin as 0. 

4.2.2 Data Augmentation 
Data augmentation is a powerful technique that can significantly increase the size of the training set, thereby 
improving the generalization ability of the model. We will apply various transformations to the input images, such 
as horizontal flipping, random cropping, and random rotation. Applying various transformations to the input images 
during training can have several advantages in improving the performance of the model. Horizontal flipping can 
increase the diversity of the dataset, which can help the model generalize better to new and unseen data. Random 
cropping can also increase the variability of the dataset and help the model learn robust features, while reducing the 
dependence on the exact positioning of objects in the image. Random rotation can also help the model learn features 
That is invariant to rotation, which is especially useful for object detection and recognition tasks. By introducing 
these transformations during training, the model can learn to recognize objects and features under a variety of 
conditions, leading to improved accuracy and robustness. 

We apply the same transformations to the corresponding labels to ensure that the label information remains 
consistent. We perform the mirror flip with a probability of 0.5, and rotate the image by an angle randomly sampled 
from the uniform distribution [-5, 5] (degrees). Additionally, we also do a center crop to size 180 from 224 and 
subsequently resize back to 224. Note that we use Pie Torch transforms for this, and build upon it to build custom 
transforms that apply the same rotation, flipping and cropping. The dataset is augmented with these modified 
training examples and passed on to the training pipeline, which remains same as in the previous sub-section. 

4.2.3 Addressing Imbalanced Classes 
In many real-world classification problems, the data may be imbalanced, i.e., some classes may have very few 
samples compared to others. This can lead to poor performance on the minority classes. To address this, we can use 
a weighted loss function, which assigns higher weights to the minority classes during training. We will implement 
our own balanced cross-entropy loss function, which calculates the weights for each class based on its frequency in 
the training set. This will help the model to focus more on the minority classes and improve their classification 
accuracy. The weights computed using the formula below is passed into porch’s cross entropy loss function. 

1
ni

i
nj j

ω = −
∑

Where wi denotes the weight for the ith class. And ni denotes the frequency of the ith class in the training set across 
all images and pixels. These weights were computed for the 21 classes on the VOC dataset and passed to the cross-
entropy loss function. The weight for the background class was 0.2973, whereas it was between 0.98-0.995 for most 
other classes. 
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4.3. Experimentation 
4.3.1 Custom Model: Advanced-FCN 
Our model, Advanced-FCN is an advanced variant of the Fully Convolutional Network (FCN) architecture, 
specifically designed for semantic segmentation tasks. Compared to the baseline FCN, Advanced-FCN incorporates 
several modifications and improvements to achieve higher accuracy and faster convergence. 

One major change in Advanced-FCN is the addition of multiple convolutional blocks, each comprising multiple 
convolutional layers, batch normalization, and Relook activation. These blocks allow the network to learn more 
complex and abstract features from the input images, resulting in improved segmentation performance. Another 
significant change is the introduction of residual connections, which facilitate the flow of gradient information 
during backpropagation, allowing deeper architectures to be trained effectively. 

In addition to these modifications, Advanced-FCN also utilizes skip connections, similar to the UNet architecture. 
These connections allow the network to capture both local and global contextual information, enabling more 
accurate segmentation of objects of different sizes and shapes. Finally, Advanced-FCN also includes a final 
deconvolution layer that up samples the feature maps to the original image size, producing a dense pixel-level 
segmentation output. Overall, these changes and enhancements in Advanced-FCN make it a powerful and efficient 
architecture for semantic segmentation tasks. 

Table 2 describes the various layers in our model. After each layer, a batch-norm was applied. Also, the skip 
connections have been denoted using the plus sign in the in-channels column. The output of the immediate previous 
deconvolution layer is passed along with output from a previous convolution layer as indicated in the column. For 
data-augmentation, we use random flipping (0.5 probability), random rotation (-5 to +5) and random cropping (180 
size). The learning rate used is 0.005 along with Adam optimized, and a cosine annealing scheduler with a Tmax of 
30. Xavier initialization was used for the weights and the class weights described in section 4.2.3 are used to handle
class imbalance. 

Table 2. Description of experimental architecture advanced-FCN. 
Layer in-channels out-channels kernel-size padding stride Activation function 
Conv1 3 32 3 1 2 Relook 
Conv2 32 64 3 1 2 Relook 
Conv3 64 128 3 1 2 Relook 
Conv4 128 256 3 1 2 Relook 
Conv5 256 512 3 1 2 Relook 
Conv6 512 1024 3 1 1 Relook 
Conv7 1024 2048 3 1 1 Relook 

Deconv1 2048 2048 3 1 1 Relook 
Deconv2 2048+1024 1024 3 1 1 Relook 
Deconv3 1024+512 512 3 1 2 Relook 
Deconv4 512+256 256 3 1 2 Relook 
Deconv5 256+128 128 3 1 2 Relook 
Deconv6 128+64 64 3 1 2 Relook 
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Deconv7 64+32 32 3 1 2 Relook 
Classifier 32 Class 1 0 1 - 

4.3.2 Transfer Learning 
Transfer learning is a machine learning technique that involves taking a pre-trained model, typically on a large 
dataset, and using it as a starting point for a new task or problem with a smaller dataset. Instead of training a new 
model from scratch, transfer learning involves using the features learned by the pre-trained model to extract relevant 
information for the new task, which can speed up the training process and potentially lead to better performance. In 
transfer learning, the pre-trained model is typically a deep neural network that has been trained on a large dataset, 
such as ImageNet for image classification tasks, and then fine-tuned on a new task using a smaller dataset. The fine-
tuning process involves adjusting the weights of the pre-trained model to better fit the new data while still retaining 
the important features learned from the large dataset. Transfer learning has been successfully applied in a wide range 
of domains, including computer vision, natural language processing, and speech recognition, and has led to state-of-
the-art performance on many benchmarks. 

In this experiment we used multiple pre-trained models such as VGG-16, ResNet12, ResNet34 etc. and settled for 
ResNet34 based on the IOU score. For transfer learning we took the ResNet34 pretrained model and used it as the 
convolution feed-forward step. We then removed the last fully connected layer and added multiple layers of 
deconvolution layers so as to map the pixel predictions back into the original image and generate the segmentation 
map. For training the new architecture, the weights of the ResNet34 model were freeze and the training on the VOC 
dataset was done so as to fine tune the model. One important to keep mind is to not initialize the ResNet34 layer 
weights. We see a great deal of model performance improvement in terms of both IOU and pixel accuracy. The 
resultant model has an accuracy of 71.33% and IOU score of 0.0926, on the test dataset. 

When we use transfer learning to create a segmentation model using the pre-trained weights of a ResNet34 model, 
we are leveraging the knowledge learned by the ResNet34 model on a large dataset (such as ImageNet) to extract 
meaningful features from images that can help with the segmentation task. The ResNet34 model is trained on 1.2 
million image in 1000 categories, which makes it a powerful feature extractor that has learned to identify and extract 
high-level features from images. Also, since the features learned by the ResNet34 model are more generalizable and 
robust to variations in the input data, we are able to adapt the features learned by the ResNet34 model to the specific 
segmentation task, which leads to better accuracy and higher IOU scores. 

By using its pre-trained weights, we can avoid the need to train the initial layers of the model from scratch, which 
can save a lot of time and computational resources. We can benefit from the knowledge and experience that has 
been gained from training on large datasets and makes the model more generalizable, robust to variations and give 
us the ability to train with smaller datasets. 

The Table 3 gives in the details about the layer of the transfer learning architecture. The data preprocessing and 
augmentation is done as described in section 4.2.2, imbalanced class labels are taken care using the weighted loss 
function (refer section 4.2.3) and the learning rate scheduling is applied (refer 4.2.1). We take the input image and 
pass it to the resnet34 architecture and get 512 channel output. We then pass these through several deconvolution 
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layers to perform prediction. We have applied batch normalization on every deconvolution layer after the Relook 
activation. This will result in increased generalization and improved training speed. The learning rate used is 0.005 
along with Adam optimized, and a cosine annealing scheduler with a Tmax of 40. Xavier initialization was used for 
the weights and the class weights described in section 4.2.3 is used to handle class imbalance. 

Table 3: Architecture for transfer learning. 
Layer In-channels Out-channels Kernel-size Padding Stride Activation function 

resnet34 3 512 - - - - 
deconv1 512 512 3 1 2 Relook 
deconv2 512 256 3 1 2 Relook 
deconv3 256 128 3 1 2 Relook 
deconv4 128 64 3 1 2 Relook 
deconv5 64 32 3 1 2 Relook 
Conv2d 32 21 1 0 1 Soft ax 

4.3.3 U-Net 
The U-Net architecture was proposed in the paper ”The paper ”U-Net: Convolutional Networks for Biomedical 
Image Segmentation” and was specifically designed for the task of biomedical image segmentation, which involves 
separating different structures within an image. The U-Net architecture is based on an encoder-decoder structure, 
where the encoder is a series of convolutional and pooling layers that reduce the spatial resolution of the input 
image, while increasing the number of feature maps. The decoder is a series of up sampling and convolutional layers 
that reconstruct the segmentation mask from the feature maps produced by the encoder. One of the key innovations 
of the U-Net architecture is the use of skip connections that connect the encoder and decoder layers at the same 
spatial resolution. These skip connections allow the decoder to access high-resolution features from the encoder, 
which can help with the reconstruction of the segmentation mask. The architecture is called U-Net because it has a 
U-shaped design. The U-Net architecture achieved state-of-the-art performance on these tasks, with significantly 
higher accuracy and faster convergence compared to previous methods.  

The Table 4 provides the details for each layer in U-Net. The data pre-processing and augmentation is done as 
described in section 4.2.2, imbalanced class labels are taken care using the weighted loss function (refer section 
4.2.3) and the learning rate scheduling is applied (refer 4.2.1). We have applied batch normalization on every layer 
after the Relook activation. This will result in increased generalization and improved training speed. The skip 
connections are mentioned after the deconv layer, denoted as n + n, where n one of the n comes from the deconv 
layer while the other comes from skip connections. The model had an IOU 0.0649 and accuracy of 72.15% on test 
dataset.  

The U-Net architecture contains a repetitive pattern of layers. It has a contracting path and an ex pending path, and 
the two paths are connected by skip connections. In particular, the contracting path typically consists of several 
repetitions of two convolutional layers followed by a max pooling layer. Each convolutional layer has a small 
receptive field and a large number of filters to capture local and global features. The max pooling layer reduces the 
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spatial size of the feature maps and increases their receptive field, thus making the network more robust to small 
image translations. The contracting path down samples the input image and extracts high-level features from it. The 
expanding path typically consists of several repetitions of an up sampling layer, a concatenation layer that combines 
the feature maps from the corresponding layer in the contracting path, and two convolutional layers. The up 
sampling layer increases the spatial resolution of the feature maps by a factor of 2, while the concatenation layer 
provides high-resolution features from the contracting path to the expanding path. The convolutional layers have a 
small receptive field and a small number of filters to generate a fine-grained segmentation mask. The expanding 
path restores the spatial resolution of the feature maps and generates a segmentation mask. Overall, the U-Net 
architecture has a symmetric shape and is designed to produce accurate and detailed segmentations of images with 
complex and irregular shapes. The repetitive pattern of layers allows the network to capture features at multiple 
scales and combine them to produce a robust and precise segmentation. Also, the learning rate used is 0.005 along 
with Adam optimized, and a cosine annealing scheduler with a Tmax of 40. 

Table 4. Description of U-Net architecture. 
Layer in-channels out-channels kernel-size padding stride Activation function 
conv1 3 64 3 1 1 ReLU 
conv2 64 64 3 1 1 ReLU 
pool1 64 64 2 0 2 - 
conv3 64 128 3 1 1 ReLU 
conv4 128 128 3 1 1 ReLU 
pool2 128 128 2 0 2 - 
conv5 128 256 3 1 1 ReLU 
conv6 256 256 3 1 1 ReLU 
pool3 256 256 2 0 2 - 
conv7 256 512 3 1 1 ReLU 
conv8 512 512 3 1 1 ReLU 
pool4 512 512 2 0 2 - 
conv9 512 1024 3 1 1 ReLU 
conv10 1024 1024 3 1 1 ReLU 
deconv1 1024 512 2 0 2 ReLU 
conv11 512 + 512 512 3 1 1 ReLU 
conv12 512 512 3 1 1 ReLU 
deconv2 512 256 2 0 2 ReLU 
conv13 256 + 256 256 3 1 1 ReLU 
conv14 256 256 3 1 1 ReLU 
deconv3 256 128 2 0 2 ReLU 
conv15 128 + 128 128 3 1 1 ReLU 
conv16 128 128 3 1 1 ReLU 
deconv4 128 64 2 0 2 ReLU 
conv17 32 + 32 64 3 1 1 ReLU 
conv18 64 64 3 1 1 ReLU 
output 64 21 1 0 1 ReLU 
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5. Results
5.1 Baseline Architecture 
The test loss for the model is 2.4114, indicating that the average difference between the predicted and actual values 
is relatively high. The test Iowa score is 0.0527, suggesting that the model is not accurately predicting the 
intersection-over-union of the predicted and actual segmentation masks (Table 5). The test pixel accuracy is 
71.31%, indicating that the model correctly classified 71.31% of the pixels in the test set. The training process 
stopped early at epoch 10, with the best validation loss achieved at 2.3914, the best validation accuracy achieved at 
73.32%, and the best validation Iowa score achieved at 0.0549. The best iteration for these metrics was achieved at 
iteration 5 (Figure 2-4). 

Table 5. Overall experimental results. 

Model Val Loss Val 
Iowa 

Val Accuracy (%) Test Loss Test Iowa Test Accuracy (%) 

FCN Baseline 2.3914 0.0549 73.32 2.4114 0.0527 71.31 
Annealing 2.3726 0.0551 75.06 2.3946 0.0529 72.86 

Augmentation 2.4021 0.0640 72.11 2.4243 0.0585 69.88 
Weights 2.6576 0.0641 70.74 2.6869 0.0596 68.98 

Adv FCN 2.6433 0.0688 71.01 2.6843 0.0602 67.20 
Transfer 2.5667 0.1060 75.04 2.6169 0.0926 71.34 

UNet 2.6111 0.0710 75.26 2.6750 0.0649 72.15 

Figure 2: Plot Showing Both Training And Validation Loss Curve for Baseline FCN Model. 
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Figure 3: Plot Showing Model Performance across Epochs for Baseline FCN Model 

Figure 4: Visualizations of the Segmented Output for Any One Image in the Test Set Along With the Original 
Image with Baseline FCN Model. 
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5.2 Improvements over Baseline 
5.2.1 Learning Rate Scheduling 
The model’s performance was evaluated on the test set with the following results after rounding off the values up to 
4 decimal points: the Test Loss was 2.3946, Test Iowa was 0.0529, and Test Pixel accuracy was 72.86%. During 
training, the model was stopped early at epoch 13, where the best loss achieved was 2.3726, best accuracy was 
75.06%, and best Iowa score was 0.0551. The best iteration was 8. These results suggest that the model has some 
room for improvement, especially in terms of Iowa score, which indicates how well the model is able to predict the 
boundary of objects in the image (Figure 5-7). 

Figure 5: Plot Showing both Training and Validation Loss Curve for Improvement Model over Baseline FCN with 
Cosine Annealing. 

Figure 6: Plot Showing Model Performance across Epochs for Improvement Model over Baseline FCN with Cosine 
Annealing. 

http://www.ijcsma.com/


Prakash, S. et al. International Journal of Computer Science and Mobile Applications, Vol 11 Issue 5, May- 
2023, pg. . 

ISSN: 2321-8363 
Impact Factor: 6.308 

(An Open Accessible, Fully Refereed and Peer Reviewed Journal) 

©2023, IJCSMA All Rights Reserved, www.ijcsma.com 

This work is licensed under a Creative Commons Attribution 4.0 International License. 

Figure 7: Visualizations of the Segmented Output for Any One Image in the Test Set along with the Original Image 
with Improvement Model over Baseline FCN with Cosine Annealing. 

5.2.2 Dataset Augmentation 
The test loss is 2.4243, the test Iowa is 0.0585, and the test pixel accuracy is 69.88%. The training was stopped early 
at epoch 37, where the best validation loss achieved was 2.4021, the best validation accuracy achieved was 72.11%, 
and the best validation Iowa score achieved was 0.0640, with the best iteration being 32. These values indicate that 
the model did not perform very well on the test set, but still performed better than the previous models, as the test 
loss is relatively high, and the test Iowa and pixel accuracy are relatively low (Figures 8-10). 

Figure 8: Plot Showing both Training and Validation Loss Curve for Improvement Model over Baseline FCN with 
Augmentation. 
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Figure 9: Plot Showing Model Performance across Epochs for Improvement Model over Baseline FCN with 
Augmentation. 

Figure 10: Visualizations Of The Segmented Output for any One Image in the Test Set along with the Original 
Image with Improvement Model over Baseline FCN with Augmentation. 
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5.2.3 Imbalanced class - loss weights 
The test performance of this model indicates that the Test Loss is 2.6869, the Test Iowa is 0.0596, and the Test Pixel 
accuracy is 68.98%. The values have been rounded to 4 decimal places. The model was trained for 15 epochs, and 
the training was stopped early. The best loss achieved during training was 2.6576, the best accuracy was 70.74%, 
and the best Iowa score was 0.0641, and these were achieved at the 10th iteration. Overall, the model’s performance 
suggests that it needs further improvement in order to achieve higher accuracy and better performance (Figures 11-
13). 

Figure 11: Plot Showing both Training and Validation Loss Curve for Improvement Model over Baseline FCN with 
Weights. 

Figure 12: Plots Showing Model Performance for Improvement Model over Baseline FCN with Weights. 
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Figure 13: Visualizations of The Segmented Output for any One Image in the Test Set along with the Original 
Image with Improvement Model over Baseline FCN with Weights. 

5.3 Experimental Architectures 
5.3.1 Custom Model: Advanced-FCN 
The test performance of the model is as follows: the test loss is 2.6843, the test IOWA (Intersection over Union) is 
0.0602, and the test pixel accuracy is 67.20%. It is worth noting that the training was stopped early at epoch 17, and 
the model achieved its best loss, accuracy, and Iowa score at epoch 12. The best loss achieved during training was 
2.6433, the best accuracy was 71.01%, and the best Iowa score was 0.0688. All values have been rounded to 4 
decimal places (Figures 14-16). 

Figure 14: Plot Showing both Training and Validation Loss Curves. 
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Figure 15: Plot Showing Model Performance across Epochs for our Custom Made Advanced-FCN Model. 

Figure 16: Visualizations of the Segmented Output for Any One Image in the Test Set along with the Original 
Image for Our Custom Made Advanced-FCN Model. 

5.3.2 Transfer Learning 
The test performance of the model was evaluated with three metrics. The test loss was found to be 2.6169, the test 
Iowa (Intersection over Union) was 0.0926, and the test pixel accuracy was 71.34%. The values have been rounded 
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off to 4 decimal places. The training process was stopped early at the 14th epoch. The best values of validation loss, 
accuracy and Iowa score were 2.5667, 75.04%, and 0.1060, respectively, achieved at the 9th epoch (Figures 17-19). 

Figure 17: Plot Showing both Training and Validation Loss Curves for Transfer Learning. 

Figure 18: Plot Showing Model Performance across Epochs for Transfer Learning. 
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Figure 19: Visualizations of the Segmented Output for any One Image in the Test Set along with the Original Image 
for Transfer Learning. 

5.3.3 U-Net 
The test performance of the model is reported as follows: the test loss is 2.6570, the test Intersection over Union 
(IOWA) is 0.0649 and the test pixel accuracy is 72.15%. These values have been rounded off to 4 decimal places. 
The training process was stopped early at epoch 11. For validation the best loss achieved during training was 2.6111, 
the best pixel accuracy was 75.26%, and the best Iowa score was 0.0710. These values were achieved at iteration 6 
(Figures 20-22). 

Figure 20: Plot Showing both Training and Validation Loss Curves for U-Net. 
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Figure 21: Plot Showing Model Performance across Epochs for U-Net. 

Figure 22: Visualizations of the Segmented Output for Any One Image in the Test Set along with the Original 
Image for U-Net. 
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6. Discussion
6.1 Baseline 
FCN The baseline (FCN) is relatively simple compared to the other models and training procedures without any 
data-augmentation, weighted loss or learning rate scheduling. Unlike the advanced architecture in Experimentation 
section, it also lacks complex architecture, skip connections or deeper layers. Hence, it is expected to perform 
poorly, which is evident from the results. It is expected to 18 have poor metrics (w.r.t. to all other implementations: 
4a-c, 5a-c), and is also expected to fail with the imbalanced class problem (when compared with 4c and onwards). 
But as it is easy to create and is simple, it forms a perfect - minimal baseline to build upon and compare our 
improvements. 

Our theoretical expectations discussed above have been verified by the results, where we observe that the test Iowa 
is 0.0527, which is much lower than the other implementations. But do note that the accuracy is high 71.31%, 
mainly because the model overfits to the background which makes up most of the image. We also note that there has 
been overfitting w.r.t Iowa scores as test values are significantly lower than validation scores which in turn are lower 
than training scores as seen in the plot. We also observe from the segmentation map visualization for the cat that the 
model fails to predict the correct (cat) class for pixels and is unable to segment many of the pixels in the image.  
The Figure 2 shows the training and validation loss across the epochs. We have used early stopping with a patience 
of 5. We observe that the training and validation loss converges fairly quickly, and then becomes almost constant. In 
the later epochs, training loss continues to marginally go down whereas the validation loss stays roughly constant 
indicating that more training the model would lead to over-fitting. The Figure 3a and Figure 3b shows the average 
IOU score and pixel accuracy across the epochs respectively. We can observe that as number of epochs increase the 
IOU score as well as the pixel accuracy increases but the rate of convergence of the pixel accuracy is higher when 
compared to IOU score. This could be due to the fact that the data has imbalance classes and that the model learns 
the background labels much quicker than other class labels. 

6.2 Improvements over Baseline  
Based on our observations and insights from the previous, we applied improvements over our baseline to address the 
issues. The improvements are discussed in the sub-sections below, where each improvement is applied on top of the 
previous one. 

6.2.1 Learning Rate Scheduling 
Adjusting the learning rate with the number of epochs during training can have several benefits. Firstly, it helps the 
model converge faster and achieve better accuracy by reducing the learning rate as the training progresses. This can 
prevent overshooting of the optimal solution and stabilize the training process. Additionally, it can help the model 
generalize better and avoid overfitting to the training data by allowing the learning rate to decrease gradually. 
However, there are also potential drawbacks to this approach. For example, if the learning rate is decreased too 
quickly, the model may not have enough iteration to converge to the optimal solution. On the other hand, if the 
learning rate is decreased too slowly, the model may take longer to converge or even get stuck in a suboptimal 
solution.  
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Using the scheduler - cosine annealing helps the model gradually step through the learning rate to improve the 
updates applied to the parameters. This, in theory, should improve the direct performance metrics for classification 
like the loss and accuracy. But the same cannot be said about the indirect metrics of performance - like Iowa scores. 
This is re-affirmed by the results, where we observe that the test loss decreased from 2.4114 of baseline to 2.3946. 
The accuracy also improved from 71.31% to 72.86%. Interestingly, the Iowa score improved only marginally from 
0.0527 to 0.0529. This reflects that most of the improvement in performance is due to the overfitting on the 
background in dataset rather than a overall improvement in segmentation. Additionally, the model’s loss curve 
indicates that the model now takes a few more epochs to converge, which is understandable as the stepping when 
clubbed with early stopping’s patience mechanism results in abrupt-slight increases in performance. Also, from the 
segmentation map, we observe that similar to the baseline model, this model fails to predict the class of the object 
correctly, while it is still able to identify the boundaries correctly to an extent, thereby indicating some sense of 
boundary feature being detected by the convolution layers of the model. The model is also not robust to changes in 
dataset - like slight rotations, mirror image or a crop. This is further improved in the next stage.  

In the Figures 5, 6a and 6b, the plots showcase the performance using cosine learning scheduler during training and 
validation. The graphs for training and validation loss demonstrate that the model’s performance improves quickly 
at the start and then stabilizes as it approaches convergence. While the training loss continues to decrease slightly 
during later epochs, the validation loss stays constant; indicating that the model may over fit if it continues training 
beyond the convergence point. 19 Furthermore, the charts depicting the average IOU score and pixel accuracy show 
that the model’s performance increases as the number of epochs increases.  

6.2.2 Dataset Augmentation 
Augmenting the dataset by applying transformations to the input images has several benefits. Firstly, it can increase 
the size of the dataset, which can help to prevent overfitting and improve the generalization of the model. Secondly, 
it can help to make the model more robust to variations in the input data, by exposing it to a wider range of 
variations that it may encounter during testing. Additionally, it can help to improve the accuracy of the model, by 
providing it with more diverse examples to learn from. However, there are also some potential drawbacks to data 
augmentation. Firstly, if the transformations are too extreme, they may distort the original image and introduce 
unrealistic features, which could lead to poor performance on real-world data. Additionally, data augmentation can 
be computationally expensive, as it requires generating multiple variations of each image during training. Finally, it 
can be difficult to choose appropriate transformations that are relevant to the specific task and dataset, which may 
require domain knowledge or trial-and-error experimentation.  

To address the robustness and generalization properties of our model, we augmented our dataset with images and 
label with correspondingly-same the rotations, flips and crops as described in detail in the method section. Applying 
these transformations is expected to improve the segmentation maps and the Iowa scores as well. This is confirmed 
by the fact that Iowa score has improved from 0.0529 to 0.0585 on the test set, which is a significant jump! But at 
the same time, our accuracy has decreased to 69.88% and the test loss increased to 2.4242. This is due to the reduced 
effect of training on background which comprises the bulk in the accuracy metric. Additionally, we observe from the 
segmentation map of the bus that the model can now detect the class correctly and is able to identify complex 
boundaries in the bus. While the segmentation map is still not satisfactory, and cannot segment the entire bus, it still 
demonstrates better ability to classify and identify boundaries when compared to the baseline model and the model 
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with cosine annealing scheduler, of which both had low Iowa and poor segment maps. It would also be better at 
segmenting images which are rotated, cropped or flipped (horizontally) without losing on the quality of 
segmentation map.  

The Figures 8, 9a and 9b demonstrate the performance of the model with dataset augmentation during training and 
validation. The curves for training and validation loss show that the model’s performance improves quickly initially, 
but then reaches a point where it is no longer improving significantly. Although the training loss decreases slightly 
further on, the validation loss remains more or less constant, indicating that additional training may cause the model 
to over fit and perform poorly on new data. Additionally, the graphs of average IOU score and pixel accuracy over 
time show that the model’s performance improves as the number of training epochs increases.  

6.2.3 Imbalanced class - loss weights 
The benefits of using imbalanced class weights for cross-entropy loss are that it allows the network to pay more 
attention to the minority classes, thereby reducing the bias towards the majority class. This can lead to improved 
performance on the minority classes and better overall accuracy. However, there are also some potential drawbacks 
to using imbalanced class weights. Using imbalanced class weights can lead to overfitting on the minority classes, 
especially if the dataset is small. This can result in poor performance on new, unseen data. Finally, using imbalanced 
class weights can increase the training time and computational resources needed to train the network, as the loss 
function needs to be computed for each example and the gradients need to be calculated accordingly.  

In the previous implementations it has been repeatedly pointed out that our model over fits on background and is 
unable to segment the rare classes. As described earlier, this has been tackled using imbalance weights in the cross 
entropy loss. These weights ensure that our loss function penalizes incorrect predictions on rare classes more, 
thereby forcing model to learn them and avoid predicting everything as background. Intuitively, this is expected to 
boost Iowa score, but would also lead to higher loss. This is re-affirmed by our observations that the test Iowa score 
has improved to 0.0596, whereas the test accuracy has dropped to 68.98%. As explained previously, due to less 
overfitting on background, this accuracy is lower than our baseline and the other previous models. Additionally, our 
segmentation map displays a great performance by our model relative to the previous models (baseline, Figure 4a, 
4b) which tend to over fit on the background or the major classes. 

The Figures 11, 12a and 12b depict the training and validation progress. The curves of training and validation loss 
indicate that the model’s performance converges relatively rapidly, and then reaches a plateau. While the training 
loss continues to slightly decrease in later epochs, the validation loss remains approximately constant, implying that 
further training may cause the model to over fit and perform poorly on new data. Furthermore, the graphs of average 
IOU score and pixel accuracy across epochs show that the model’s performance increases with the number of 
epochs, albeit pixel accuracy converges faster. This could be due to an imbalanced distribution of class labels in the 
training data, resulting in the model learning the background labels much quicker than other class labels.  

6.3 Experimental Architectures  
While the improvements discussed in the previous section helped us achieve a much better performance and 
segmentation maps, we seek to further improve our performance and now attempt to make changes to the 
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architecture of the model while keeping the training pipeline fixed as obtained after applying the three 
improvements over the baseline.  

6.3.1 Custom Architecture Advanced FCN  
We build a custom architecture which we call Advanced FCN as described in 4.3.1. The results show improvement 
over the baseline architecture with an improved IOU score of 0.0602. The same is reflected in the segmentation 
maps where the model is able to segment the horse (partly) and the person well. This shows that adding more layers 
to the baseline FCN along with adding some skip connections significantly impacts the performance.  

Since this model uses more convolutional and batch normalization layers which increases the depth and complexity 
of the model, it helps the model learn more complex features and patterns in the input data. The use of skip 
connections between the encoder and decoder allows the model to retain more spatial information from the input 
data. This helps the model generate more accurate segmentations. The skip connections allow the decoder to access 
information from the encoder at multiple levels of abstraction, which can help preserve finer details and improve 
segmentation accuracy. This model also uses a smaller kernel size for the last convolutional layer which in turn 
helps in reducing the number of parameters that can help prevent overfitting of the model. But, as we have more 
layers and parameters in this architecture, the model would take more time and resources to train.  

In addition to the above described architecture of our own, we also experimented with different number of layers 
and used different activation functions like soft ax which did not give a better IOU score or accuracy than the ReLU 
activation function which seemed to perform best among all.  

Figures 14, 15b and 15a illustrate the training and validation performance our custom Advanced FCN model. The 
training and validation loss curves show that the model’s performance stabilizes relatively quickly, and then 
improves at a slower rate. The training loss continues to decrease slightly in later epochs, while the validation loss 
remains relatively constant. This suggests that further training may cause the model to over fit to the training data, 
and degrade its ability to generalize to new data. Additionally, the IOU (Intersection over Union) score and pixel 
accuracy graphs demonstrate how the model’s performance improves over time. As the number of epoch’s 
increases, both metrics improve, although pixel accuracy converges more quickly. This is likely due to the fact that 
the model is learning the background labels much faster than the other class labels, which leads to an imbalance in 
the training data. 

6.3.2 Transfer Learning 
In this experiment we have used transfer learning which results in faster training time, improved accuracy and IOU 
score, better generalization etc. On the other hand, transfer learning also brings in the biases of the pre-trained model 
and the data they were trained on. There is also the problem of limited transferability, not all pre-trained models can 
be transferred to all the tasks and we need to check the model compatibility. More over sometimes pre-trained 
models could lead to over-fitting.  

For the pre-trained model resnet34 was used that resulted in reduced training time, improved pixel accuracy and 
IOU score, improved generalization. Some of the challenges using this architecture are large memory requirements 
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and complex architecture. Based on these factors we got an accuracy of 21 71.33% and IOU score of 0.092 on the 
test dataset, which is the best model performance among all the experiments, surpassing the baseline, improved 
baseline, advanced-FCN and U-Net.  

The increment in performance can be attributed to various factors. First, resnet-34 is a relatively deep neural 
network architecture, which allows it to capture complex features and patterns in the input data. This is especially 
important for semantic segmentation, which involves understanding and segmenting the different objects and 
regions in an image. Second, resnet-34 uses residual connections, which helps to reduce the vanishing gradient 
problem and improve the flow of gradients during training. This leads to better regularization and can help prevent 
overfitting, which is important in semantic segmentation where the model needs to generalize well to new images. 
Third, resnet-34 has been pre-trained on a large and diverse dataset (ImageNet), which allows it to capture generic 
features that can be useful for a variety of computer vision tasks. These are some of the important factors 
influencing the performance we got.  

The Figure 17 shows the training and validation loss across the epochs. We have used early stopping with a 
patience of 5. We observe that the training and validation loss converges fairly quickly, and then becomes almost 
constant. In the later epochs, training loss continues to go down whereas the validation loss starts to rise indicating 
that more training the model would lead to over-fitting. The Figure 18a and Figure 18b shows the average IOU 
score and pixel accuracy across the epochs respectively. We can observe that as number of epochs increase the IOU 
score as well as the pixel accuracy increases but the rate of convergence of the pixel accuracy is higher when 
compared to IOU score. This could be due to the fact that the data has imbalance classes and that the model learns 
the background labels much quicker than other class labels.  

6.3.3 U-Net  
For this experiment the model architecture used was U-Net. U-NET is powerful and popular neural network 
architecture for semantic segmentation, but like any other architecture, it has its own set of advantages and 
disadvantages. Some of the advantages are: First, it is designed to use memory and computational resources 
efficiently. Its efficient memory usage makes it a good choice for applications with limited resources. Second, it can 
handle variations in input size, which makes it useful for applications where images vary in size. Third, it 
preservation spatial information, due to the presence of skip connections and improve segmentation accuracy. On 
the other hand, some of the disadvantages are: that it has limited field of view, which is a result of down sampling 
operations and can result in missed object details. Second, its sensitivity to image variations like variations in 
lighting, rotation, and scale, which can make it less accurate in certain situations. Third, U-NET can struggle with 
class imbalance in the training data, where one class may be significantly underrepresented compared to others.  
For the U-Net model, we got a pixel accuracy of 72.15% and IOU score of 0.065 on the test dataset, which is the 
second best model performance among the experiments. We also see a better segmentation map (Figure 22a, 22b) 
in this case. The increase in performance can be attributed to the factors like skip connections, which preserved the 
spatial information, deeper network when compared to other models (except resnet34) and model compatibility to 
segmentation task, since the U-Net was specifically designed for medical data segmentation. The U-Net came in 
second to resnet34 architecture due to the factors like insufficient training data to capture more generic features and 
shallower network when compared to resnet34. It was better than the baseline and the improved baseline model 
performance in terms of IOU score.  
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The Figure 20 shows the training and validation loss across the epochs. We have used early stopping with a 
patience of 5. We observe that the training and validation loss converges fairly quickly, and then keeps decreasing 
slowly. In the later epochs, training loss continues to go down where as the validation loss starts to rise indicating 
that more training the model would lead to over-fitting. The Figure 21a and Figure 21b shows the average IOU 
score and pixel accuracy across the epochs respectively. The performance plots follow the same trend as the loss 
plot though in opposite direction. We can observe that as number of epochs increase the IOU score as well as the 
pixel accuracy increases and the rate of convergence of the pixel accuracy and IOU score are comparable in this 
case. This could be due to weighted loss which tried to take tackling the data’s class imbalance problem.  

6.4 Discussion Summary 
We can see that the performance varies across different setups, architectures and models. Let’s look into the test 
dataset performance of the model, based on pixel accuracy and IOU scores. The initial baseline model achieved an 
accuracy of 71.3% and IOU score of 0.0527, but it was improved by using an adjusted learning rate during training, 
data augmentation, and a weighted loss criterion to handle class imbalance. These enhancements resulted in 
improved IOU scores of 0.0529, 0.0585, and 0.0596 for corresponding accuracy scores of 72.86%, 69.88%, and 
68.98%. So we can see that the IOU scores increased for these experiments when compared to base line model. But 
the same cannot be told about the accuracy. This is due to the fact that, the operations being performed (adaptive 
learning rate, data augmentation and weighted loss), result in increment of performance across class but decreases 
for background class, which constitute of majority of the class labels.  

Further improvements were attempted by experimenting with the model architecture, resulting in a custom 
Advanced-FCN model with skip connections and a deeper network, achieving an accuracy of 67.19% and IOU score 
of 0.0602.Again an increment from the base line and improved baseline, in terms of IOU score. To further improve 
performance, transfer learning was applied using pre-trained weights from a Resnet34 model with added 
deconvolution layers to produce segmented masks, resulting in an accuracy of 71.33% and IOU score of 
0.092.Finally, a vanilla U-Net model was implemented and achieved an accuracy of 72.15% and IOU score of 0.065 
when evaluated on the VOC dataset. The Resnet34 model with pre-trained weights achieved the best performance, 
attributed to the use of skip connections, pre-trained weights for feature capture, and a deeper network. The U-Net 
implementation got the second best model performance and was better than the baseline as well as the improved 
baseline.  

7. Conclusion
We started with a baseline model and got an accuracy of 71.3% and IOU score of 0.0527. This was the very bare-
bones implementation, to perform segmentation task. The baseline model was then improved upon by using adjusted 
learning rate during training (cosine annealing learning rate scheduler), data augmentation and weighted loss 
criterion to handle imbalance class problem, resulting in corresponding accuracy and IOU scores of 72.86% and 
0.0529, 69.88% and 0.0585, 68.98% and 0.0596 respectively. Even though the same baseline model was used, these 
enhancements showed improvements in the IOU scores. Next, the model architecture was experimented and 
changed, resulting in custom model (Advanced-FCN). This architecture had skip connections with deeper network 
and resulted in an accuracy of 67.19% and IOU score of 0.0602. To increase the performance even more, transfer 
learning was used so as to bring in pre-trained weights with better feature capture capabilities. Resnet34 was used as 
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the pre-trained model, with added deacon layers to produce the segmented masks. This resulted in an accuracy 
of71.33% and IOU score of 0.092 Nest, vanilla U-Net was implemented so as to observe how it performs on VOC 
dataset. This resulted in an accuracy of 72.15% and IOU score of 0.065 the pre-trained resnet-34 model architecture 
resulted in the best model performance, which could be attributed to various factors like skip connections, pre-
trained weights to better capture features and deeper network. Various tables contain the model architectures; all the 
loss and accuracy plots are given in the figure and explained. The model performance results have been provided 
and compared. 
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