

 Prof. Dhande Mahesh et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 4, April- 2015, pg. 22-32 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 22

Abstract:Information extraction systems are traditionally implemented as a pipeline of special-purpose processing modules

targeting the extraction of a particular kind of information. A major drawback of such an approach is that whenever a new

extraction goal emerges or a module is improved, extraction has to be reapplied from scratch to the entire text corpus even though

only a small part of the corpus might be affected. In this project, we describe a novel approach for information extraction in which

extraction needs are expressed in the form of database queries, which are evaluated and optimized by database systems. Using

database queries for information extraction enables generic extraction and minimizes reprocessing of data by performing

incremental extraction to identify which part of the data is affected by the change of components or goals. Furthermore, our

approach provides automated query generation components so that casual users do not have to learn the query language in order to

perform extraction. To demonstrate the feasibility of our incremental extraction approach, we performed experiments to highlight

two important aspects of an information extraction system: efficiency and quality of extraction results.

Keywords: Text mining, query languages, information storage and retrieval.

1. Introduction

Text mining is inter disciplinary field which draws on information retrieval, data mining, machine learning, statistics, and

computational linguistics. As most information (common estimates say over 80%) is currently stored as text, text mining

is believed to have a high commercial potential value. Increasing interest is being paid to multilingual data mining: the

ability to gain information across languages and cluster similar items from different linguistic sources according to their

meaning. Text mining, sometimes alternately referred to as text data mining, roughly equivalent to text analytics, refers to

the process of deriving high-quality information from text. High-quality information is typically derived through the

divining of patterns and trends through means such as statistical pattern learning. Text mining involves the application of

techniques from areas such as information retrieval, natural language processing, information extraction and data mining.

These various stages of a text-mining process can be combined together into a single workflow.

Incremental Information Extraction Using Relational

Database System & PTQL

Prof. Dhande Mahesh, Ashwini Zankar, Sheetal Paithankar, Kanchan Naik, Shweta Mahale

 Lecturer, Computer Engg Department, Shatabdi College of Eng., Pune University

Nasik, Maharashtra

maheshdhande@rediffmail.com

Final year Student of Computer Eng. Department, Shatabdi College of Eng., Pune University

 Nasik, Maharashtra.
ashwinizankar@gmail.com

Final year Student of Computer Eng. Department, Shatabdi College of Eng., Pune University

 Nasik, Maharashtra.
Psheetal812@gmail.com

Final year Student of Computer Engg Department, Shatabdi College of Eng, Pune University

 Nasik, Maharashtra.
Kanchan3691@gmail.com

 Final year Student of Computer Engg Department, Shatabdi College of Eng, Pune University

 Nasik, Maharashtra.
Swetamahale3@gmail.com

 Prof. Dhande Mahesh et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 4, April- 2015, pg. 22-32 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 23

1.1. Information Extraction:

Fig1: Conceptual Framework of Text Information System

 Fig shows the Conceptual Framework of Text Information System consist the Retrieval applications & Mining

applications. Natural language content analysis access text and send it to information organization, which perform

operations like Topic analysis, Extraction, Clustering, Visualization, Summarization, Filtering, Search, Categorization etc.

Information organization provide information access & knowledge acquisition.

1.2 Basic Generality Techniques

Fig2: Basic Generality Techniques

Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-

structured machine-readable documents. In most of the cases this activity concerns processing human language texts by

means of natural language processing (NLP).Information extraction systems are traditionally implemented as a pipeline of

special-purpose processing modules targeting the extraction of a particular kind of information. A major drawback of such

an approach is that whenever a new extraction goal emerges or a module is improved extraction has to be reapplied from

scratch to the entire text corpus even though only a small part of the corpus might be affected.

1.3 Workflow

 A typical IE setting involves a pipeline of text processing modules in order to perform relationship extraction.

These include:

1. Sentence splitting: identifies sentences from a paragraph of text.

2. Tokenization: identifies word tokens from sentences.

3. Named entity recognition: identifies mentions of entity types of interest.

 Prof. Dhande Mahesh et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 4, April- 2015, pg. 22-32 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 24

4 Syntactic parsing: identifies grammatical structures of sentences.

 5. Pattern matching: obtains relationships based on a set of extraction patterns that utilize lexical, syntactic, and semantic

features of text as input to perform relationship extraction.

Fig.3. A workflow of text processing modules that takes a paragraph

 Fig.3.illustrates a typical text processing workflow in order to perform extraction of relationships. Extraction patterns are

typically obtained through manually written patterns compiled by experts or automatically generated patterns based on

training data. Different kinds of parsers, which include shallow and deep parsers, can be utilized in the pipeline. In our

work, the Link Grammar parser is utilized as part of our extraction approach. Extraction patterns are typically obtained

through manually written patterns compiled by experts or automatically generated patterns based on training data.

Different kinds of parsers, which include shallow and deep parsers, can be utilized in the pipeline. In our work, the Link

Grammar parser is utilized as part of our extraction approach.

2. Link Grammar

2.1 Introduction

 Link grammar (LG) is a theory of syntax by Davy Temperley and Daniel Sleator which builds relations between pairs of

words, rather than constructing constituents in a tree-like hierarchy. There are two basic parameters: directionality and

distance. Link grammar is similar to dependency grammar, but dependency grammar includes a head-dependent

relationship, as well as lacking directionality in the relations between words. The Link Grammar parser is a dependency

parser based on the Link Grammar theory. Link Grammar consists of a set of words and linking requirements between

words. A sentence of the language is defined as a sequence of words such that the links connecting the words satisfy the

following properties:

1) The links do not cross

 2) The words form a connected graph.

3) Links satisfy the linking requirements of each word in the sentence.

2.2 Linkage

 The output of the parser, called a linkage, shows the dependencies between pairs of words in the sentence. For example

“RAD53, which activates DNA damage, positively regulates the DBF4 protein.”

Fig4. Linkage of the sentence “RAD53, which activates DNA damage, positively regulates the DBF4 protein.”

 Prof. Dhande Mahesh et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 4, April- 2015, pg. 22-32 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 25

3. SYSTEM APPROACH
Our approach composed basic two phases:

 Initial phase: for processing of text and

 Extraction phase: for using database queries to perform extraction.

The Text Processor in the initial phase is responsible for corpus processing and storage of the processed information in the

Parse Tree Database (PTDB). The extraction patterns over parse trees can be expressed in our proposed parse tree query

language. In the extraction phase, the PTQL query evaluator takes a PTQL query and transforms it into keyword-based

queries and SQL queries, which are evaluated by the underlying RDBMS and information retrieval (IR) engine. To speed

up query evaluation, the index builder creates an inverted index for the indexing of sentences according to words and the

corresponding entity types. Fig illustrates the system architecture of our approach.

 Our approach provides two modes of generating PTQL queries for the purpose of information extraction:

1. Training set driven query generation.

2. Pseudo-relevance feedback driven query generation.

3.1 System Architecture

To generate a set of patterns for information extraction using the training set driven approach, the pattern generator first

automatically annotates an unlabeled The framework includes the parse tree database for storing intermediate processed

information and the query evaluator for the evaluation of PTQL queries through filtering and translation to SQL queries.

Document collection with information drawn from a problem-specific database. This step necessitates a method for

precise recognition and normalization of protein mentions.

Fig5: System architecture of the PTQL framework.

From this labeled data, initial phrases referring to interactions are extracted. These phrases are then refined to compute

consensus patterns and the resulting PTQL queries are generated by the query generator. However, training data are not

always readily available for certain relationships due to the inherent cost of creating a training corpus. In that regards, our

approach provides the pseudo relevance feedback driven approach that takes keyword based queries, and the PTQL query

generator then finds common grammatical patterns among the top-k retrieved sentences to generate PTQL queries.

3.2 Parse Tree Database

 We propose a new paradigm for information extraction that utilizes database management systems as an essential

component of our extraction framework. Database management systems become a logical framework of choice that can

serve such dynamic extraction needs over file-based storage systems. As illustrated in Figure 1, text processing

components such as named entity recognizers and syntactic parsers are deployed for the entire collection. The

intermediate output of the processing modules is stored in a relational database known as the parse tree database.

Extraction then becomes a matter of issuing database queries in the form of parse tree query language (PTQL). In the

event of a change of extraction goals or a module update, the responsible module is deployed for the entire text corpus and

the processed data is populated into the parse tree database with the previously processed data. Incremental extraction is

performed so that database queries are issued to identify sentences with newly recognized mentions. Once the affected

sentences are identified, extraction can then be performed only on such sentences rather than the entire corpus. By storing

 Prof. Dhande Mahesh et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 4, April- 2015, pg. 22-32 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 26

the processed data, our approach avoids the need to reprocess the entire collection of text unlike the file-based pipeline

approaches. Avoiding reprocessing of data is particularly important for extraction. We highlight the technical

contributions of the architecture proposed Novel Database-Centric Framework for Information Extraction. Unlike

traditional approaches for IE, our approach is to store intermediate text processing output in a specialized database called

the parse tree database. Extraction is formulated as queries so that it is no longer necessary to write and run special-

purpose programs for each specific extraction goal. Our approach minimizes the need of reprocessing the entire collection

of text in the presence of new extraction goals and deployment of improved processing components.

3.3 Information Extraction Frame Phases

 Our information extraction framework is composed of two phases:

a) Initial Phase:

We perform a one-time parse, entity recognition and tagging (identifying individual entries as belonging to a class of

interest) on the whole corpus based on current knowledge. The generated syntactic parse trees and semantic entity tagging

of the processed text is stored in a parse tree database (PTDB).

b) Extraction Phase:

 Extracting particular kinds of relations can be done by issuing an appropriate query to the PTDB. To express

extraction patterns, we designed and implemented a query language called parse tree query language (PTQL) that is

suitable for generic extraction. Our system not only allows a user to issue PTQL queries for extraction, but it can also

automatically generate queries from training data or user keyword-based queries.

Fig6: Parse tree database use for extraction & update of modules

 A fundamental design criterion for the query language is the ability of expressing linguistic patterns based on constituent

trees. Standard XML query languages such as XPath and XQuery seem to be the ideal candidates for querying parse trees.

An additional design criterion for the query language is the ability to express linguistic patterns based on dependency

grammar, such as Link Grammar. Links and link types can be useful in linguistic patterns, such as the type MXsr connects

a relative pronoun to its corresponding noun. However, languages such as XQuery and LPath can only express ancestor

descendant and sibling relations between nodes. One of the novel features of our proposed query language PTQL is the

ability to express links and link types between pairs of nodes, so that PTQL can be used to express linguistic patterns

based on constituent trees and links, as well as link types. We propose a high level extraction query language called

PTQL. PTQL is an extension of the linguistic query language LPath that allows queries to be performed not only on the

constituent trees but also the syntactic links between words on linkages.

 A PTQL query is made up of four components:

1. Tree patterns,

2. Link conditions,

3. Proximity conditions, and

4. Return expression.

1. Tree pattern: describes the hierarchical structure and the horizontal order between the nodes of the parse tree.

2. Link condition: describes the linking requirements between nodes.

3. Proximity condition: is to find words that are within a specified number of words.

4. Return expression: defines what to return. We start with the basic element of PTQL queries called node expressions.

 Prof. Dhande Mahesh et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 4, April- 2015, pg. 22-32 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 27

4. QUERY EVALUATION

Our approach for the evaluation of PTQL queries involves the use of IR engine as well as RDBMS. The role of the IR

engine in query is to select sentences based on the lexical features defined in PTQL queries, and only the subset of

sentences retrieved by the IR engine are considered for the evaluation of the conditions specified in the PTQL queries by

RDBMS. We summarize the process of the evaluation of PTQL queries as follows.

4.1. Translate the PTQL query into a filtering query.

4.2. Use the filtering query to retrieve relevant documents D and corresponding sentences S from the inverted index.

4.3. Translate the PTQL query into an SQL query and instantiate query with document id 2 D and sentence id s

 2 S.

4.4. Query PTDB using the SQL query generated in Step 3.

4.5. Return the results of the SQL query as the results of the PTQL query.

5. Query Generation

An important aspect of an IE system is its ability to extract high-quality results. In this section, we demonstrate the

feasibility of our approach by first describing two approaches in generating PTQL queries automatically:

1. Training set driven query generation

2. Pseudo-relevance feedback driven query generation.

The first query generation approach takes advantage of manually annotated data to generate PTQL queries for the

extraction of protein-protein interactions. As training data are not always available, we introduce the latter approach that

identifies frequent linguistic structures to generate PTQL queries without the use of training data. We illustrate our

approach with an application of protein-protein interaction extraction using a set of syntactic patterns that are expressed in

PTQL queries. To generate a set of patterns for information extraction, the annotator component is applied to

automatically annotate an unlabeled document collection with information drawn from a problem-specific database. This

step necessitates a method for precise recognition and normalization of protein mentions. From this labeled data, the

pattern generator identifies relevant phrases referring to interactions in order to generate patterns. These initial patterns are

then used to compute consensus patterns through the pattern generalization component for protein-protein interactions

(PPIs). PTQL queries are then formed by the query generator to perform extraction from the parse tree database.

6. Results

We showed that we can retrieve the document file names based on the user query and the query searches based on the

phrase based search which retrieves semantic data. We can get progressive corpus without extraction from scratch by

storing the intermediate results in the table and retrieve the document by using PTQL query. We first illustrate the

performance of our approach in terms of query evaluation and the time savings achieved through incremental extraction.

We evaluate the extraction performance for our two approaches

1. Automatic training set driven query generation & data processing. Without PTQL.

2. Automatic Query generation by using user keyword based query generation & data processing. With PTQL.

6.1 Input Data Sample1:Medical Data
 Your tonsils and adenoids are part of your lymphatic system. Your tonsils are in the back of your throat. Your

adenoids are higher up, behind your nose. Both help protect you from infection by trapping germs coming in through your

mouth and nose. Treatments include surgery, radiation therapy, photodynamic therapy (PDT), and biologic therapy.

 Prof. Dhande Mahesh et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 4, April- 2015, pg. 22-32 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 28

a)Document parse tree:

Fig7: Snapshot of Document parse tree without PTQL

Fig8: Snapshot of Document parse tree with PTQL

b). Search query:

Fig9: Snapshot of Search Query without PTQL.

 Prof. Dhande Mahesh et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 4, April- 2015, pg. 22-32 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 29

Fig10: Snapshot of Search Query with PTQL.

C) Time performance chart:

 Fig: Snapshot of Time performance of search query without PTQL.

Fig11:Snapshot of Time performance of search query with PTQL.

 Input Data Sample 2:

Biomedical Research Data.
 Rad53 is a protein kinase required for cell-cycle arrest in response to DNA damage. Rad53 controls the S-phase

checkpoint as well as G1 and G2 DNA damage checkpoints. It prevents entry into anaphase and mitotic exit. After DNA

damage via regulation of the Polo kinase Cdc5. Rad53 also seems to be involved in the phosphorylation of Rph1.A Zink

finger protein that acts as a damage-responsive repressor of the photolyase gene Phr1 in saccharomyces cerevisiae. The

2C type phosphatase, Ptc2, which is required for DNA check point inactivation after double-strand breaks, appears to

dephosphorylate Rad53.

 Prof. Dhande Mahesh et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 4, April- 2015, pg. 22-32 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 30

1. Document parse tree:

Fig12: Snapshot of Document parse tree without PTQL.

Fig13: Snapshot of Search Query without PTQL.

Search query:

Fig14: Snapshot of Document parse tree with PTQL.

 Prof. Dhande Mahesh et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 4, April- 2015, pg. 22-32 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 31

2. Time performance chart:

Fig15: Snapshot of Time performance of search query without PTQL.

Fig16: Snapshot of Search Query with PTQL.

Time performance in Micro seconds for search with PTQL evaluation & in Milliseconds for search without PTQL for a

biomedical research sample data as given above. The time performance indicates that our proposed framework is acceptable

for real-time IE.

Conclusion

 Information Extraction has been an active research area over the years. The main focus has been on improving the accuracy of

the extraction systems, and IE has been seen as an one-time execution process. Such paradigm is inadequate for real-world

applications when IE is seen as long running processes. We describe how our proposed extraction framework differs from

traditional IE systems, rule-based IE systems and IE systems based on machine learning. While new documents can be added to

our text collection, the content of the existing documents are assumed not to be changed, which is the case for Medline

abstracts. Our focus is on managing the processed data so that in the event of the deployment of an improved component or a

new extraction goal, the affected subset of the text corpus can be easily identified.

 The filtering process utilizes the efficiency of IR engines so that a complete scan of the parse tree database is not needed

without sacrificing any sentences that should have been used for extraction. Furthermore, our approach provides automated

query generation components so that casual users do not have to learn the query language in order to perform extraction. To

demonstrate the feasibility of our incremental extraction approach, we performed experiments to highlight two important

aspects of an information extraction system: efficiency and quality of extraction result

 Prof. Dhande Mahesh et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 4, April- 2015, pg. 22-32 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 32

References
1. A. Doan, L. Gravano, R. Ramakrishnan, and S. Vaithyanathan, Introduction to Special Issue on Managing Information

Extraction,” ACM SIGMOD Record, vol. 37, no. 4, p. 5, 2008.

2. E. Agichtein and L. Gravano, “Snowball: Extracting Relations from Large Plain-Text collections,” Proc. Fifth ACM

Conf. Digital Libraries, pp. 85-94, 2000.

3. A. Doan, J Naughton, R. Ramakrishnan, A. Baid, X. Chai, Chen, P. DE Rose, B. Gao, C Gokhale, J.Huang,W. Shen,

and B.-Q. Vuong, “Information Extraction Challenges in Managing Unstructured Data,” ACM SIGMOD Record, vol. 37,

no.4, pp. 14-20, 2008.

4. R. Krishnamurthy, Li, S. Raghavan, S. Vaithyanathan, and H. Zhu, “SystemT: A System for Declarative Information

Extraction,” ACM SIGMOD Record, vol. 37, no. 4, pp. 7-13, 2009.

5. P.G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano, “Towards a Query Optimizer for Text-Centric Tasks,” ACM

Trans. Database Systems, vol. 32, no. 4, p. 21, 2007.

6. P.G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano, “Towards a Query Optimizer for Text-Centric Tasks,” ACM

Trans. Database Systems, vol. 32, no. 4, p. 21, 2007.

