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Abstract 

 
The classical sorting techniques such as Selection Sort and Insertion sort have a poor worst case time performance of 

     .   However, these techniques can be useful for relatively small data sets.   In this paper we look at the interesting 

case of applying the ideas of both techniques on a set of n elements.   We show that it is possible to use both techniques 

together to produce a more efficient hybrid sorting algorithm.   This hybrid algorithm runs in    √   and therefore, 

improves the worst case time efficiency by a factor of √ .  The asymptotic time performance of the hybrid algorithm is the 

same for the best, average and worst case scenarios.   
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1. Introduction 
Sorting is one of the most performed operations in computing.   Sorting problem and algorithms were known 

for quite some time.  Probably one of the most well known of the oldest sorting algorithm is that of the 

Hollerith sorter [Anon].  One of the best references to this subject is [Knuth].  There are many sorting 

algorithms with some being more appropriate for certain tasks.    For example, some of the criteria for the 

choice of a good sorting algorithm is how adaptive is the algorithm is (for nearly sorted data), or its stability 

(changing of relative order of elements with equal keys), or whether it can sort in situ (in place) or not, as well 

as, of course, how efficient the algorithm is.   Two of the most well known sorting algorithms are Selection sort 

and Insertion sort.   They are usually taught in first undergraduate courses on data structures and algorithms 

and have been well studied in the computer literature with many variations as indeed they provide a tantalizing 

contrast between theoretical and empirical analysis.   Both techniques work on having two sets: one sorted and 

the other unsorted set.  Selection sort works by starting with an initially empty sorted set and the rest of the 

data in the unsorted list.  We repeatedly select the minimum of the unsorted list and append it to the end of the 

sorted list until the unsorted list becomes empty.  Insertion sort on the other hand starts with a sorted list with a 

single element initially, and the rest of the data being in the unsorted lists.  We repeatedly take an element from 

the unsorted list and insert it in the right position in the sorted list, moving data element when necessary to 

make room for the newly inserted data item.  This process is repeated until the unsorted list is empty.  Both 

techniques sort in situ and take       time to sort n data items in the worst case.  These sorting techniques are 

not considered as efficient sorting techniques since one can show that sorting of n elements by comparison can 

be performed in          time in the worst case using for example Heap sort or Merge sort. 

In this paper we study the effect of combining ideas from both techniques and analyze the performance of this 

hybrid technique.  We show that combining the ideas of selection and insertion sorts gives an improved in situ 

sorting algorithm that can sort in    √   time which provides a significant improvement over the 

performance of both sorting algorithms. 
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2.  Analysis of Selection and Insertion Sort 
 

I. SELECTION SORT.  
Selection Sort and as mentioned earlier is one of the simplest sorting techniques and is useful when data is 

small.   It requires O(n
2
) comparisons in the worst case, but O(n) data movement in the worst case, making it 

an appropriate sorting technique for small datasets but with large size of records.  It repeatedly finds the 

minimum of remaining unsorted items and swaps that element with the j
th

  element on the j
th

 iteration, j=1, 2, 

3,…, n-1. 

 

Pseudo code 

Algorithm SelectionSort (X, n)   

        X[1..n]  

S. No  statement     Cost  Worst Case Times  

1  for i ← 1 TO n-1    𝐶1      

2       iMin ← i     𝐶2     − 1  

3       for j ← i +1 TO n    𝐶3   ∑    ∑    
      

 
    

   
 
       

4           if (X[j]>X[iMin))    𝐶4   ∑  ∑    
      

 
    

   
 
       

5                iMin ← j    𝐶5   ∑  ∑    
      

 
    

   
 
      

6       min ←X[iMin]    𝐶6     − 1  

7       X[iMin] ← X[i]    𝐶7     − 1  

8       X[i] ← min    𝐶8     − 1 

 

Note:  in steps 1 and 3 we add an extra comparison step for the case when the test to exit the do loop is true. 

 

Analysis of Worst - Case Time Complexity 
The overall cost of operations performed in the worst case occurs when we always perform step 5 (when the 

original data set is already sorted by in reverse order).  In such case we have: 

      𝐶    𝐶        𝐶  
      

 
  𝐶  

      

 
  𝐶  

      

 
  𝐶  𝐶  𝐶        

Rearranging the terms we get 

      𝐶  
  

 
 𝐶  

  

 
 𝐶  

  

 
 (𝐶  

𝐶 

 
 

 𝐶 

 
 

 𝐶 

 
 𝐶  𝐶  𝐶 )     𝐶 

 𝐶  𝐶  𝐶   

Thus we have 

                      

The best case scenario on the other hand occurs when the condition on step 4 is always false and thus step 5 is 

never executed.  In such a case we have. 

      𝐶    𝐶        𝐶  
      

 
  𝐶  

      

 
  𝐶     

  𝐶  𝐶  𝐶        

Rearranging the terms we get 

      𝐶  
  

 
 𝐶  

  

 
  (𝐶  

𝐶 

 
 

 𝐶 

 
 𝐶  𝐶  𝐶 )     𝐶  𝐶  𝐶  𝐶   

Thus we have 

                      in the best case as well. 

From the above results one can easily conclude that selection sort requires       operations in the average 

case too. 
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II. INSERTION SORT.  

Insertion Sort  
Insertion sort algorithm is also one of oldest, easiest and most useful sorting algorithms for dealing with 

modicum of data set. If the first few objects are already sorted, an unsorted object can be inserted in the sorted 

set in proper place [10]. 

B. Pseudo Code & Execution Time of Individual Statement of Insertion Sort  

Algorithm InsertionSort (X, 1, n)   

Given X[1..n]  

S.No  Iteration      Cost  Worst Case Times  

1  for j ← 2 TO length[X]  {   𝐶1     

2        key ← X[j]      𝐶2    − 1  

3  //  Put X[j] into the sorted sequence X[1 . . j − 1] 

4        i ← j − 1      𝐶3    − 1  

5        while i > 0 and X[i] > key  {  𝐶4  ∑    ∑          
      

 

   
   

 
     

6               X[i +1] ← X[i]     𝐶5  ∑ ∑     
      

 

   
   

 
    

7               i ← i − 1   }   𝐶6  ∑ ∑     
      

 

   
   

 
    

8        X[i + 1] ← key  }   𝐶7    − 1  

 

Analysis of Worst - Case Time Complexity  

The number of iterations is maximum when step is TRUE for all values of i > 0, and thus the term    (which 

can be either 0 or 1 depending on whether the statement is true or  not) will always be 1 for these values of i.  

in such a case we have 

      𝐶    𝐶         𝐶        𝐶  (    
      

 
)     𝐶  

      

 

      𝐶  
      

 
   𝐶        

Rearranging the terms we get 

      𝐶  𝐶  𝐶   
  

 
 (𝐶  𝐶  𝐶  

𝐶 

 
 

𝐶 

 
 

𝐶 

 
 𝐶 )     𝐶  𝐶  𝐶 

 𝐶   

Thus we have 

                      

 

The number of iterations is minimum when step is FALSE for all values of i>0, and thus the term    (which 

can be either 0 or 1 depending on whether the statement is true or  not) will always be 0 for these values of i.  

in such a case we have 

      𝐶    𝐶         𝐶        𝐶        𝐶       𝐶       𝐶 
       

Thus  

      𝐶  𝐶  𝐶  𝐶  𝐶      𝐶  𝐶  𝐶   𝐶   

From which one can conclude that  

                

However, the average case analysis yields a       time bound, but we will omit the proof. 
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3.  Hybrid InsertionSelection Sort Technique 
Our technique of marrying both the selection and insertion sort ideas can be summed up as follows:   

1.  Given an array X with n data element indexed from 1 to n, one can view the array as consisting of √  

smaller adjacent arrays X[1.. √ ], X[1+√ ..2√ ], …, X[n+1-√ .. ] as shown in Figure 1.    we shall 

refer to these sub-arrays as:               √  . 

 

2. Sort each sub-array     , 1 ≤ i ≤ √ , using insertion sort. 

3. For each element X[j], j = 1, 2, 3, …, n,  of the array X, perform the following variant of Selection 

sort: 

If X[j] falls in the sub-array   ,  then for all sub-arrays      …  √  perform selection of 

minimum of all of these sub-arrays as follows: 

i. Find the minimum, and its location of only the first elements of each sub-array 

ii. Compare this minimum and the element X[j], and if this minimum is less then swap 

with X[j], in which case we perform insertion sort iteration on the sub-array from 

which the element X[j] was moved to in order to make sure that the sub-array 

remains sorted. 

 

 

    Array X[1..n] 

        ……  …… ……  

     …… 

                                                                                                 √  

    Figure 1 

Lemma 1.  The hybrid technique sorts the array X in situ. 

Proof. 

The correctness of the technique follows by induction:   

The first position of the array X will hold the smallest of the elements in the first position of all the sub-arrays.  

Since each sub array was already sorted using insertion sort, it follows that the first position of each sub-array 

contains the smallest element in that sub-array and hence the first position of X will contain the smallest 

element in the whole array.    

Now assume that we are currently in the j+1
st
 iteration of step 3 and all the elements up to and including the jth 

element of array X are indeed the smallest j elements of the array and are in sorted order.   

Let   ⌈
   

√ 
⌉  be the value of the quotient of division of j+1 over √  with the fraction rounded up to the next 

integer, and let             √  .   
Thus the j+1

st
 of the array X is also the i

th
 element of the     sub-array.   

Step 3.i performs the operation of selection sort by finding the minimum of the elements in locations j+1..n.  it 

does so by finding the smallest of the smallest element of the remaining sub-arrays         √   and 

comparing that smallest value with the current element in (j+1) position of the array X to place the smallest in 

that location.   Thus location j+1 of the array X will hold the smallest j+1
st
 element of the array after the 

iteration is completed.   

It follows therefore that the technique does indeed sort the array X in place.  QED 
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From the discussion above one can see that we avoided the selection of the minimum of the unsorted data 

items in the array by selecting only the minimum element of the smallest value of the sub-arrays.   Therefore, 

now we need only to inspect √  elements of the array X to find the minimum of the remaining elements of the 

array.  It is here where we gain the benefit of reducing the asymptotic time complexity of the classical 

Selection sort by a factor of√ . 

 

The Hybrid Algorithm 

Given array X[1..n] of integer values 

 

S# statement     cost times 

1 for i = 1 to √  {    C1 1+√  

2       lb = (i-1)* √   +1    C2 √   

3       ub = (i)* √      C3 √  

4       InsertionSort (X [lb.. ub]) }  C4 √  √  
 
  √  

5 for i = 1 to n-1   {    C5   

6        ⌈    √   ⌉     C6  -1 

7      lb = j* √   +1     C7  -1 

8      min = X [lb]     C8  -1 

9      minj = lb     C9     

10      k = minj       C10  -1 

11      while (k <  √  )  {   C11        √  

12            if X [k] < X [minj]    C12      √  

13      minj= k    C13      √       

14            k = k + √  }    C14      √  

15    if X [minj] < X [lb] {   C15     

16         swap(X [k], X [minj])    C16          

17         InsertionSort (X [minj .. minj - 1+√ ])  } C17      √       √     

18    i=i+1 }     C18     

 

 

 

Analysis of the hybrid algorithm. 

 Steps 1 to 4 of the algorithm sort the sub-arrays               √  of the array X.  each sub array consists 

of only  √  data items.  Thus step 4 would take C4*( √ )
2
 to sort each sub array, from which it follows that 

the overall time for step 4 is C4*  √  .   In steps 5 to 8 we iterate over the array X starting from the first data 

element up to the last.   In step 6 we find the sub-array the current element belongs to, and steps 7 and 8 we 

find the lower and upper bounds of the next adjacent sub-array.  In steps 9 to 15 we select the minimum of the 

remaining unsorted data items of X by only going thru the first element of each sub-array   .   We compare 

that element with item currently under consideration and swap the values if the current value in location j of 

the array X is not the minimum.  In step 17 we make sure that the sub-array from which the swapped item came 

from remains sorted by calling InsertionSort again.  Such a step can only take C17*√  time in the worst case 

in, since the sub-array was sorted before and now we have at most one item of the sub-array not in its right 

position.  Moreover, since we iterate over steps 5 to 18 n-1 times the extra factor of n-1 for each of these steps 

follows. 
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Note that the when steps 13 or 15 and 16 are performed the value of    and     are equal to 1, and 0 otherwise.  

Thus we have as a worst case time complexity: 

      𝐶        𝐶  ( √ )   𝐶  ( √ )  𝐶  ( √ )     𝐶       

         𝐶  𝐶  𝐶  𝐶  𝐶   𝐶   𝐶   𝐶          𝐶     

      √    𝐶   𝐶         √           √   𝐶    √  

Rearranging we get 

       𝐶  𝐶   𝐶   𝐶   𝐶   𝐶     √    
  𝐶   𝐶   𝐶   𝐶   𝐶  𝐶    𝐶    𝐶    𝐶       

  𝐶  𝐶  𝐶   𝐶   𝐶   𝐶    √      𝐶  𝐶  𝐶   𝐶  𝐶 
 𝐶  𝐶  𝐶   𝐶   𝐶   𝐶    

Thus          √           √         

Where      𝐶  𝐶   𝐶   𝐶   𝐶   𝐶    

     𝐶   𝐶   𝐶   𝐶   𝐶  𝐶    𝐶    𝐶    𝐶             

     𝐶  𝐶  𝐶   𝐶   𝐶   𝐶         

And      𝐶  𝐶  𝐶   𝐶  𝐶  𝐶  𝐶  𝐶   𝐶   𝐶   𝐶    

It follows therefore, that         √           √           √    giving the substantial 

improvement of a factor of √  over the performance of either insertion sort or selection sort. 

 

Best case performance of the Hybrid algorithm 
The best case time complexity performance of the algorithm occurs when steps 13 or 15 and 16 are never 

executed the value of    and     are then equal to 0.  This occurs when the data in array X were already in 

required sorted order.   In such a case step 4 would take 𝐶    time, and as mentioned earlier, steps 13, 15, 

and 16 are never executed.  However, the complexity remains     √   since steps 11, 12, and 14 are 

executed that many times.  This follows from the fact that Selection sort would perform       time in the best 

case too. 

Thus we have:  

 

Theorem.  The Hybrid Selection Insertion algorithm best, average, and worst case performance are 

all   √  . 

 

4. Conclusion  
In this paper we presented an algorithm built using the ideas of classical selection and insertion sorting.  We 

proved that the new hybrid algorithm has a worst, best, and average case time complexity of    √  .  The 

idea was to reduce the time it takes selection sort to find the minimum element from      to just   √  .  

This was achieved by treating the input array as constituting of √  sorted sub-arrays each of size √ .    The 

use of sub-arrays reduced the time a data item is moved from its current position to its correct position from   

in the classical insertion sort technique to just √  places in the hybrid technique.   
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