

A.Suresh et al, International Journal of Computer Science and Mobile Applications,

Vol.2 Issue. 4, April- 2014, pg. 31-38 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 31

Providing Reliable Service in Data-center Networks

A.Suresh1, S. Jaya Kumar 2

1M.Tech (CSE) Student, Department of CSE, SRM University, Ramapuram, Chennai, India

suresh_hce2004@yahoo.co.in
2Assistant Professor, Department of CSE, SRM University, Ramapuram, Chennai, India, ven_bsc@yahoo.co.in

Abstract

Transport Control Protocol (TCP) in cast congestion happens in high-bandwidth and low-latency networks when multiple
synchronized servers send data to the same receiver in parallel. For many important data-center applications such as Map Reduce
and Search, this many-to- one traffic pattern is common. Hence TCP in cast congestion may severely degrade their performances,
e.g., by increasing response time. In this paper, we study TCP in cast in detail by focusing on the relationships between TCP
throughputs, round-trip time (RTT), and receive window. Unlike previous approaches, which mitigate the impact of TCP in cast
congestion by using a fine- grained timeout value, our idea is to design an In cast congestion Control for TCP (ICTCP) scheme

on the receiver side. In particular, our method adjusts the TCP receive window proactively before packet loss occurs. The
implementation and experiments in our test bed demonstrate that we achieve almost zero timeouts and high good put for TCP in
cast. Hence, TCP connections with short round-trip times may receive unfairly large allocations of network bandwidth when
compared to connections with longer round-trip times.

Keywords: Distributed Network Management, Data Center Network, TCP Incast Congestion

1. Introduction
This paper focuses on avoiding packet loss before in cast congestion, which is more appealing than recovery after

loss. Of course, recovery schemes can be complementary to congestion avoidance.

The smaller the change we make to the existing system, the better. To this end, a solution that modifies only the

TCP receiver is preferred over solutions that require switch and router support (such as ECN) and modifications on

both the TCP sender and receiver sides. Our idea is to perform in cast congestion avoidance at the receiver side by

preventing in cast congestion. The receiver side is a natural choice since it knows the throughput of all TCP

connections and the available bandwidth. The receiver side can ad-just the receive window size of each TCP

connection, so the aggregate burstiness of all the synchronized senders are kept under control. We call our design in

cast congestion Control for TCP (ICTCP).

TCP does not work well for many-to -one traffic pat-terns on high-bandwidth, low-latency networks. Congestion

occurs when many synchronized servers under the same Gigabit Ethernet switch simultaneously send data to one

receiver in parallel. Only after all connections have finished the data transmission can the next round be issued.
Thus, these connections are also called barrier-synchronized. The final performance is determined by the slowest

TCP connection, which may suffer from timeout due to packet loss. The performance collapse of these many-to-one

TCP connections is called TCP in cast congestion. The root cause of TCP in cast collapse is that the highly burst

traffic of multiple TCP connections overflows the Ethernet switch buffer in a short period of time, causing intense

packet loss and thus TCP retransmission and timeouts. Previous solutions focused on either reducing the wait time

for packet loss recovery with faster retransmissions [2], or controlling switch buffer occupation to avoid overflow by

using ECN and modified TCP on both the sender and receiver sides [5].

However, adequately controlling the receive window is challenging: The receive window should be small enough to

avoid in cast congestion, but also large enough for good performance and other non in cast cases. A well-performing

throttling rate for one in cast scenario may not be a good fit for other scenarios due to the dynamics of the number of

connections, traffic volume, network conditions, etc.

A.Suresh et al, International Journal of Computer Science and Mobile Applications,

Vol.2 Issue. 4, April- 2014, pg. 31-38 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 32

2. Problem statement
 The existing algorithm focuses on the issue of estimating the used bandwidth by counting ACK packets and by

filtering the information they convey. The ability of this method to perform well when the data is not perfect is
crucial for the extension of the method from spheres (for which it was initially developed) to arbitrary shapes

[2].The Proposed algorithm redirects the packet to header parser module. Packet header is parsed and the

information on flow table is updated. Algorithm module is responsible for receive window calculation .If a TCP

ACK packet is sent out, the header modifier change the receive window field in TCP header if need. Client server

communication acknowledgement is available .It is a variable bandwidth based on packet size. Packet re-

transmission can be done by using intermediate router. With the support of TOR switch we can make connection

with dozens of servers [4].Amount of data transmitted by each connection relatively small. The files are deliberately

stored in multiple servers. Packet loss is controlled by using ICTCP algorithm [5].

2.1 Bandwidth allocation for Data Center
Running multiple virtual networks over a real physical substrate is a promising way to provide agility in current data

centers.[2] However, such virtual networks may experience severely degraded performance due to the competing of

network traffic on shared physical links. Based on the idea of the Stack solution from non-cooperative game theory,
this paper presents a hierarchical game theoretic model for dynamic bandwidth allocation between virtual networks,

which can be stable and can maximize the revenue of both infrastructure providers who manage the physical

infrastructure and service providers who utilize the virtual networks to provide services. In the model, the data

center owner as a leader designs a pricing mechanism for bandwidth allocation that attempts to drive the virtual

networks to the social optimal solution, each virtual network as a follower chooses a willingness-to-pay to maximize

its own profit. Experimental results show that the bandwidth allocation between virtual networks is efficient and fair

[6].
The traffic and network conditions in data-center networks create the three preconditions for in cast congestion as

summarized in [2]. First, data-center networks are well structured and layered to achieve high bandwidth and low

latency, and the buffer size of top - of-rack (ToR) Ethernet switches is usually small. Second, a recent measurement.

Fig. 1.Data-Center Network

A.Suresh et al, International Journal of Computer Science and Mobile Applications,

Vol.2 Issue. 4, April- 2014, pg. 31-38 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 33

Figure2. System Architecture Diagram

Once the system has been designed, the next step is to convert the designed one in to actual code, so as to satisfy the

user requirements as excepted. If the system is approved to be error free it can be implemented. When the initial

design was done for the system, the department was consulted for acceptance of the design so that further

proceedings of the system development can be carried on. After the development of the system, a demonstration was

given to them about working of the system. The aim of the system illustration was to identify any malfunctioning of

the system.

2.2 Citations and References

[1].S.Kandula,S.Sengupta, A.Greenberg,P.Patel,and R.Chaiken,“The nature of data center traffic: Measurements &

analysis,”inProc.IMC,2009-We explore the nature of traffic in data centers, designed to sup-port the mining of

massive data sets. We instrument the servers to collect socket-level logs, with negligible performance impact. In a

1500 server operational cluster, we thus amass roughly a terabyte of measurements over two months, from which we

obtain and report detailed views of traffic and congestion conditions and patterns. We further consider whether

traffic matrices in the cluster might be obtained instead via tomography inference from coarser-grained counter data.

[2].Ganger,G.Gibson,and B.Mueller,“Safe and effective fine-grained TCP retransmissions for datacenter

communication,” inProc.ACM SIGCOMM, 2009-This paper presents a practical solution to a problem facing high-

fan-in, high-bandwidth synchronized TCP workloads in datacenter Ethernets the TCP in cast problem.
[3]. S.Ghemawat,“MapReduce: Simplified data processing on large clusters,” in Proc. OSDI, 2004, -Map Reduce is

a programming model and an associated implementation for processing and generating large data sets. Users specify

a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with the same intermediate key. Many real world tasks are

expressible in this model, as shown in the paper. Programs written in this functional style are automatically

parallelized and executed on a large cluster of commodity machines. The run-time system takes care of the details of

partitioning the input data, scheduling the pro-gram’s execution across a set of machines, handling ma-chine

failures, and managing the required inter-machine communication.

3. ICTCP Algorithm
ICTCP provides a receive window- based congestion control algorithm for TCP at the end-system. The receive

windows of all low-RTT TCP connections are jointly adjusted to control throughput on incast Congestion [7]. Our

ICTCP algorithm closely follows the design points made in Section III. In this section, we describe how to set the
receive window of a TCP connection [8].There are several benefits that can be achieved when ICTCP is

implemented in a driver:[2] 1) It naturally supports virtual machines, which are widely used in data centers. We

discuss this point in detail in the following section. 2) ICTCP needs the incoming throughput on a very small time

A.Suresh et al, International Journal of Computer Science and Mobile Applications,

Vol.2 Issue. 4, April- 2014, pg. 31-38 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 34

granularity (comparable to RTT at hundreds of microseconds) to estimate available bandwidth, and this information

can be easily obtained at a driver. Note that the incoming traffic includes all types of traffic arriving on that

interface, besides TCP. 3) It does not touch TCP/IP implementation in the Windows kernel. As a quick and dirty

solution, it supports all OS versions instead of patching each one by one for deployment in a large data-center

network with various TCP implementations.

3.1 ICTCP pseudo-code

Initially:

cwnd = 1;

ssthresh = infinite;

New ack received:

if (cwnd < ssthresh)

/* Slow Start*/

cwnd = cwnd + 1;

else

/* Congestion Avoidance */

cwnd = cwnd + 1/cwnd;

Timeout:

/* Multiplicative decrease */
ssthresh = cwnd/2;

cwnd = 1;

Sliding windows, a technique also known as windowing, is used by the Internet's Transmission Control Protocol

(TCP) as a method of controlling the flow of packets between two computers or network hosts [3]. TCP requires that

all transmitted data be acknowledged by the receiving host. Sliding windows is a method by which multiple packets

of data can be affirmed with a single acknowledgment. DCTCP is an enhancement to the TCP congestion control
algorithm for data center networks. It leverages Explicit Congestion Notification (ECN)[1], a feature which is

increasingly becoming available in modern data center switches. DCTCP sources extract multi-bit feedback on

congestion from the single-bit stream of ECN marks by estimating the fraction of marked packets. In doing so,

DCTCP sources react to the extent of congestion, not just the presence of congestion as in TCP[2]. This finer level

of control allows DCTCP to operate with very low buffer occupancies while simultaneously achieving high

throughput [2].

A.Suresh et al, International Journal of Computer Science and Mobile Applications,

Vol.2 Issue. 4, April- 2014, pg. 31-38 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 35

Figure. 3. Modules in ICTCP Driver and Software Stack For Virtual Machine Support.

A.Suresh et al, International Journal of Computer Science and Mobile Applications,

Vol.2 Issue. 4, April- 2014, pg. 31-38 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 36

Figure.4. Bandwidth limitations for Round Trip Time using TCP

Transport Control Protocol (TCP) in cast congestion happens in high-bandwidth and low-latency networks when

multiple synchronized servers send data to the same receiver in parallel [2]. For many important data-center

applications such as Map Reduce and Search, this many-to-one traffic pattern is common [3]. Hence TCP in cast
congestion may severely degrade their performances, e.g., by increasing response time. In this paper, we study TCP

in cast in detail by focusing on the relationships between TCP throughput, round-trip time (RTT)[4], and receive

window. Unlike previous approaches, which mitigate the impact of TCP incast congestion by using a fine-grained

timeout value, our idea is to design an In cast congestion Control for TCP (ICTCP) scheme on the receiver side. In

particular, our method adjusts the TCP receive window proactively before packet loss occurs[5].

3.2 Bucket leaky algorithm and rate allocation algorithm
Bucket Leaky Algorithm is an algorithm used to check that data transmissions, in the form of packets, conform to

defined limits on band width [4].A fixed capacity bucket, associated with each virtual connection or user, leaks at a

A.Suresh et al, International Journal of Computer Science and Mobile Applications,

Vol.2 Issue. 4, April- 2014, pg. 31-38 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 37

fixed rate [3].If this amount of water would cause the bucket to exceed its capacity then the packet does not conform

and the water in the bucket is left unchanged [4].

3.3 Bucket leaky pseudo-code
We consider rate allocation algorithm for resolving fundamental problem of bandwidth allocation among flows in a
packet-switched network [2].The classical max-min rate allocation has been widely regarded as a fair rate allocation

policy. We generalize the theory of the classical max-min rate allocation with the support of both the minimum rate

and peak rate constraints for each flow [3].

Figure 6. Bucket leaky algorithm

The bucket leaky pseudocode is as follows,
01 earches=5

02 per_second=60

03 current_allowed=searches

04 last_check = time()

05 while process(search_terms):

06 # we determine how many seconds since the last search

07 time_now=time()

08 time_passed = time_now - checked_at now

09 # and set when our last search was

10 checked_at=time_now

11 # add tokens to bucket:

12 current_allowed += time_passed * (searches / per_second)
13 # check if we have any tokens

14 if (current_allowed > searches):

15 # we have reached our max. tokens

16 current_allowed = searches

17 if (current_allowed < 1):

18 #partial token, ignore search

A.Suresh et al, International Journal of Computer Science and Mobile Applications,

Vol.2 Issue. 4, April- 2014, pg. 31-38 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 38

19 discard_search()

20 else:

21 # we have at least one token

22 do_search()

23 # and we "spend" the token

24 current_allowed = current_allowed – 1

4. Conclusion
In this paper, we have presented the design, implementation, and evaluation of ICTCP to improve TCP performance

for TCP in cast in data-center network s. In contrast to previous approaches that used a fine-tuned timer for faster

retransmission, we focus on a receiver-based congestion control algorithm to prevent packet loss. ICTCP adaptively

adjusts the TCP receive window based on the ratio of the difference of achieved and expected per-connection

throughputs over expected throughput, as well as the last-hop available bandwidth to the receiver. Our experimental

results demonstrate that ICTCP is effective in avoiding congestion by achieving almost zero timeouts for TCP

incast, and it provides high performance and fairness among competing flows. The number of connections becomes

extremely large. Switching the receive window between several value. How to handle congestion while sender and
receiver are not under the same switch. Use ECN to obtain congestion information.

References
[1].Phanishayee, E. Krevat, V. Vasudevan, D. Andersen, G. Ganger, G. Gibson, and S. Seshan, “Measurement and analysis of
TCP throughput collapse in cluster-based storage systems,” in Proc. USENIX FAST, 2008.
[2].V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen, G. Ganger, G. Gibson, and B. Mueller,“Safe and effective
fine-grained TCP retransmissions for datacenter communication,”
[3].S.Ghemawat,“MapReduce:Simplified data processing on large clusters,” in Proc. OSDI, 2004.
[4].C.Guo,G.Lu,D.Li,H.Wu,X.Zhang,Y.Shi,C.Tian,Y.Zhang,and S.Lu,“BCube:A high performance, server-centric network

architecture for modular data centers,” in Proc. ACM SIGCOMM, 2009.
[5].C.Guo,H.Wu,K.Tan,L.Shi,Y.Zhang, and S.Lu,“DCell: Ascalable and fault tolerant network structure for data centers,” in
Proc. ACM SIGCOMM, 2008.
[6]. The New Data Center - Brocade FIRST EDITION New technologies are radically reshaping the data center TOM CLARK
[7]. NX-OS and Cisco Nexus Switching: Next-Generation Data Center Architectures, 2nd Edition
[8]. Using TRILL, FabricPath, and VXLAN: Designing Massively Scalable Data Centers (MSDC) with Overlays.

A Brief Author Biography

A. Suresh – Completed Bachelor of Engineering in Computer Science and Engineering and presently doing M.Tech(CSE) at
SRM University, Ramapuram.

S. Jayakumar – Working as an Assistant Professor in the Department of Computer Science and Engineering at SRM University,
Ramapuram.

