

Kamalesh Maity et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 12, December- 2014, pg. 08-15 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 8

STUDY OF VARIOUS DATA COMPRESSION TOOLS

Divya Singh

[1]
, Vimal Bibhu

[2]
, Abhishek Anand

[3]
, Kamalesh Maity

[4]
,Bhaskar Joshi

[5]

Senior Lecturer, Department of Computer Science and Engineering, AMITY University Greater Noida [1]

Assistant Professor, Department of Computer Science and Engineering, AMITY University Greater Noida [2]

B.Tech Scholar, Department of Computer Science and Engineering, AMITY University Greater Noida [3][4][5]

Abstract

This paper focuses on the compression technique implemented by BZIP2 and its comparison to one of the existing

compression techniques ―GZIP‖ and ―XZ‖. This Paper also discusses the various algorithms used in BZIP2.The

comparison between both the techniques include factors like Compressed file size upon comparison, compression time and

decompression time. The techniques mentioned here are lossless.

Keywords: Data Compression, Lossless, Lossy, BZIP2, GZIP, XZ, Burrows-Wheeler Transform, Huffman

Coding, Deflate LZMA.

1. Introduction
Technology is changing and pacing every second. The output of today becomes the input of tomorrow.

Everything needs to be short and precise and to do that we need short message or smaller data. To shorten the

data, we need to compress the data. That’s how the idea of data compression came into existence.

Data compression means shortening the size of the data so as to reduce the disk size as well as data

transmission becomes faster. Both are inter-related as once the data size reduces, the data that needs to be

transmitted is short and hence it gets transmitted very fast. Basically, compression includes encoding the data

in such a way that the redundant bits or letters which are occurring are removed upon compression.

Mainly, there are two types of data compression i.e, Lossy and Lossless data compression. When the redundant

data bits are removed upon compression and regained after decompression, then this sort of compression is

known as Lossless Data Compression while on the other hand if it is not recovered upon decompression then

the compression is classified as Lossy Data Compression.

Examples of lossless data compression technique are ―Text File Compression‖. Here the letters in a text file

upon decompression are not lost. Examples of lossy data compression techniques are image, video

compression where few data is lost and is not regained upon decompression.

Kamalesh Maity et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 12, December- 2014, pg. 08-15 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 9

2. Introduction To BZIP2

BZIP2 is an open source advanced data compression program which uses Burrow-Wheeler Block-Sorting Text

Compression Algorithm. It is not a file archiver instead is a single file compressor. Though bZip2 is a bit

complicated than the other compression programs but we have researched that why it should be implemented

especially in compression over the network.

BZIP2 compression tool is very efficient in compressing files as compared to the older algorithms like LZW

and DEFLATE. It compresses the data in the blocks of 100-900 Kilobytes and then uses Burrows-Wheeler

Transform algorithm to convert frequent occurring character sequences into string of identical letters.

BZIP2 compress Heavy Files in Blocks.Block size affects the compression ratio and the amount of memory for

compression and decompression.At Compression Time Block size stored in compressed file & at

Decompression stage block size is used from header of the compressed file.

BZIP2 compressed files into blocks of 900kb long.Each Block is handled independently so if media error

caused multi-block [.bz2] file to become damaged so due to block's of compressed file it may possible to

recover data from undamaged clock in file.Each block is delimited by 48-bit pattern & each block ocntain own

32-bit CRC so damaged block is find out from undamaged block's.

2.1 BZIP2 Compression Process
BZIP2 Generally a use following algorithms before compression to format data into blocks that can be

compressed later and at the time of decompression, they follow reverse order.

1. Burrows–Wheeler transform (BWT): This algorithm takes an input of strings and rearranges them in

such a way that most frequent letters assemble together so that the compression becomes very easy. The BWT

begins by create a list of strings contain all cyclical rotations of original strings.Then List is sorted and last

character of each rotation make a transformed string.Transformed string is formed by taking last column of the

block. For better understanding, we take an example below:-

Kamalesh Maity et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 12, December- 2014, pg. 08-15 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 10

Working of Burrows-Wheeler includes two Steps:-

• Arrange the text into circular Array and arrange them using BWT delimiter.

• Block-sort the arranged array into lexicographical order.

2. MOVE-TO-FRONT Transform : The Move-to-front transform apply to improves effectivness of

entropy encoding algorithm.MTF keep the recently used characters at front of the list.a new sequence output is

generated of small number with more repeats.

3. Run-length encoding (RLE): Once the sorting is done, the sorted string is encoded according to the

frequency of the letters. This can be understood by the following example.

Kamalesh Maity et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 12, December- 2014, pg. 08-15 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 11

4. Huffman coding: The run length encoded text generated in the previous step is taken as input and a

Huffman Tree is created using the Huffman coding and the letters are encoded into their individual binary

codes. The letter with minimum frequency gets the highest binary code and the letter with the maximum, gets

the lowest.

Kamalesh Maity et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 12, December- 2014, pg. 08-15 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 12

3. Introduction To GZIP
GZIP is one of the most advanced compressor program which replaced the older "compress" program in unix

systems to achieve compression at a faster rate.

The Algorithms Used in GZIP Are :-

• DEFLATE: - This algorithm is the combination of LZ77 and Dynamic Huffman coding.

GZIP uses LZ77 algorithm and dynamic Huffman algorithm to compress data. first Gzip use LZ77 algorithm

to compress data , then use dynamic Huffman algorithm to compress the result.GZIP program has an excellent

integration with unix-files and it has ―.gz‖ extension(file format).

4. Introduction To XZ
"XZ" is in the series with one of the best compression programs like "7-ZIP" which uses LZMA algorithm to

compress the data. It is also a lossless data compressor.

Although, it is similar to "7-ZIP" program which uses LZMA2 algorithm but "XZ" has an extra edge over the

7-ZIP as it has integration with unix-file like "metadata".

This compressor program has its own file format which is ".xz" and it takes single file as input and not the

multiple files. The most significant part of this compression program is that it can compress ―tar‖ (archived)

files too.

5. Compression & Decompression Analysis
In the following section we are analysing compression / decompression ratio of all the mentioned compression

program.We using two different Processor to compress three different file and record compression size /

decompression time / cpu-usage.

5.1 Test Condition

Processor Intel Core i7-3770 Intel Core 2 Duo T6500

Architecture x86 x86

Platform Kalinux 1.0.6 Kalinux 1.0.4

Process :-

1.First we Take Three Different Files with Filesize 1M , 10M , 100M

Text File contain Garbage Random Repeated Data.

2.Compress all files and analyze the time / compressed size / cpu usage / decompression time

Results :-

Once the Test is Over, We get the Following Results.

size - filesize

ctime - compression time

csize - compressed size

Kamalesh Maity et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 12, December- 2014, pg. 08-15 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 13

dtime - decompression time

c-cpu - cpu usage during compression

Note: Processor { Intel Core 2 Duo } - Kalinux 1.0.4 x86

Algo size[MB/KB] ctime[s] csize[kb] dtime[s] c-cpu[%]

bzip2 1.0/1048576 0.02 0.06 0.00 93

gzip 1.0/1048576 0.00 1.3 0.01 80

xz 1.0/1048576 0.17 0.296 0.00 99

Algo size[MB/KB] ctime[s] csize[kb] dtime[s] c-cpu[%]

bzip2 10.5/10485760 0.25 0.072 0.04 98

gzip 10.5/10485760 0.12 12.7 0.06 100

xz 10.5/10485760 1.47 1.7 0.02 99

Algo size[MB/KB] ctime[s] csize[kb] dtime[s] c-cpu[%]

bzip2 104.9/104857600 2.58 0.113 0.44 99

gzip 104.9/104857600 1.07 101.8 0.66 99

xz 104.9/104857600 14.23 15.4 0.55 99

Note: Processor { Intel Core i7 } - Kalinux 1.0.6 x86

Algo size[MB/KB] ctime[s] csize[kb] dtime[s] c-cpu[%]

bzip2 1.0/1048576 0.02 0.06 0.00 54

gzip 1.0/1048576 0.01 1.3 0.00 88

Xz 1.0/1048576 0.08 0.296 0.00 89

Kamalesh Maity et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 12, December- 2014, pg. 08-15 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 14

Algo size[MB/KB] ctime[s] csize[kb] dtime[s] c-cpu[%]

bzip2 10.5/10485760 0.12 0.072 0.02 97

gzip 10.5/10485760 0.06 12.7 0.03 93

xz 10.5/10485760 0.70 1.7 0.02 98

Algo size[MB/KB] ctime[s] csize[kb] dtime[s] c-cpu[%]

bzip2 104.9/104857600 1.02 0.113 0.40 98

gzip 104.9/104857600 0.60 101.8 0.55 98

xz 104.9/104857600 6.77 15.4 0.50 98

BZIP2 Compression Performance Over Dual Quad-Core Xenon Processor.When we compress the Large File

by using BZIP2 on Dual Quad-Core Xenon Processor. We find that BZIP uses more than two cores to

parallelize the work.

CPU Usage – 7ZIP

CPU Usage – BZIP2

Kamalesh Maity et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 12, December- 2014, pg. 08-15 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 15

6. Conclusion

From the above sets of results, we have concluded that bzip2 program has the best compression ratio (size after

compression/size before compression). Though gzip has the least compression time but the compression size is

greater than bzip2.

References

[1] M. Burrows and D. J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm. Technical Report 124, 1994.

[2] Brenton Chapin and Stephen R. Tate. Higher Compression from the Burrows-Wheeler Transform by Modified Sorting.

In Data Compression Conference.

[3] P. Fenwick. Block-Sorting Text Compression — Final Report, 1996.

[4] David A. Huffman. A method for the construction of Minimum-Redundancy Codes — Proceedings of the Institute of

Radio Engineers.

[4] David A. Huffman. A method for the construction of Minimum-Redundancy Codes — Proceedings of the Institute of

Radio Engineers

[5] T.A.Welch. A Technique for High Performance Data Compression. IEEE Computer, Vol. 17, No. 6, June 1984.

[6] Giovanni Manzini. Wheeler. The Burrows-Wheeler Transform:Theory and Practice.

[7] JUERGEN ABEL. Improvements to the Burrows Wheeler Compression Algorithm: After BWT Stages.

[8] Jagadish H. Pujar,Lohit M. Kadlaskar. A New Lossless Method of Image Compression and Decompression Using

Huffman Coding Techniques.

1st Divya Singh – Senior Lecturer at Amity University Greater Noida (Email Address : divya1784@rediffmail.com)

2nd Vimal Bibhu – Assistant Professor at Amity University Greater Noida.

3rd Abhishek Anand – B.Tech Scholar at Amity University Greater Noida (Email Address : abhi9312@gmail.com).

4th Kamalesh Maity – B.Tech Scholar at Amity University Greater Noida (Email Address : mail.maity25@gmail.com).

5th Bhaskar Joshi – B.Tech Scholar at Amity University Greater Noida (Email Address : bhaskarj078@gmail.com).

