

Kalaiselvi Arunachalam et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 10, October- 2015, pg. 48-58 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 48

The Comparison of Inter-Application

Communication Mechanisms in

Mobile Operating Systems

Kalaiselvi Arunachalam
1
, Dr. Gopinath Ganapathy

2

1Research Scholar, Department of Computer Science, Bharathidasan University, Tiruchirappalli - 620023, India

kalaiselvi.arunachalam@gmail.com
2Professor and Head, Department of Computer Science, Bharathidasan University, Tiruchirappalli - 620023, India

gganapathy@gmail.com

Abstract

The mobile devices like Smartphone, Tablet and Notebook are playing vital role in communication and the mobile

phones from several manufacturers provide thousands of applications to their customers for an effective

communication, entertainment etc. Some of the popular mobile operating systems are Android, iOS, Windows

Phone and Blackberry with thousands of mobile applications built around them. This paper presents a comparison

of inter-application communication mechanisms in these mobile operating systems. This paper also provides the

limitations of inter-application communication in these mobile operating systems and proposed an approach to

achieve inter-application communication across them.

Keywords: Inter-application Communication; Inter-app Communication; Mobile app to app Communication;

Mobile operating system; App Communication Mechanism

1. Introduction

Thousands of mobile applications from various categories are available in each mobile operating

system. The mobile operating system vendors provide these applications to their customers either free

or at cost through their online stores. As these applications reside within a device or a mobile phone,

the communication between these applications is required in order to share data between them. The

inter-application communication is a system in which one application communicates with another by

sharing documents, photos, music, videos, URLs and other types of data. For example, a Mail

application communicate with a Map application to show a location or a Chat application communicate

with a Music Player application to play an audio content.

In this paper, a comparison is carried out on the existing mechanisms for inter-application

communication in mobile operating systems like Intent in Android, AirDrop and URL scheme in iOS,

File and Protocol Association in Windows Phone and the Invocation framework in Blackberry. Also,

this paper indicates the limitation of inter-application communication and a proposed approach to

achieve it across these mobile operating systems.

Kalaiselvi Arunachalam et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 10, October- 2015, pg. 48-58 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 49

2. Android

In Android, there are four major types of application components like activities which represent

each screen with a user interface in an application, services which run in the background

without a user interface, content providers which store the application data and broadcast

receivers which listen to system wide events provide unique functionality for an application in

Android mobile operating system. These application components are declared in the

application's manifest file (AndroidManifest.xml) for each application. The inter-application

communication is implemented in Android mobile operating system using Intent (Android 4.4 is

considered in this paper for comparison) and it transfer messages between these application

components to share data and to start other applications [1].

2.1 Intent
A messaging mechanism used for communication between the application components in Android

mobile operating system. Intent transfer asynchronous messages from one component to another

component within an application and to other applications within a device [Figure 1].

Figure 1: Intents transferring messages between app components

Android mobile operating system use intent to start a particular application component, to

transfer the data to be used by the recipient component and to perform an action. Explicit intent

starts a particular component directly without giving control to the user. These intents are

typically used to start a component within the same application like starting a service to upload

a file in the background. Implicit intents are used to start a component from another application

like showing a user location on a map. The Android system immediately starts the application

component specified in the explicit intent. For implicit intent, the Android system searches the

suitable component for the intent in the intent-filters declared in the manifest file

(AndroidManifest.xml) of other applications on the device [1]. An intent-filter is an expression

declared in the application manifest file to specify the type of intent to be received by the

component. If there is only one intent-filter available for the implicit intent, then the Android

system starts the application component immediately. If there are multiple intent -filters

available for the implicit intent, then the Android system provides a chooser dialog to the user

to select one among them [1] like sharing a photo with social media applications [Figure 2].

Kalaiselvi Arunachalam et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 10, October- 2015, pg. 48-58 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 50

Figure 2: Sharing photo with various apps using Intent

The primary attributes of an intent are the action which specify the action to be performed and the data

which to be operated on. The secondary attributes of an intent are the category which specify the

additional information about the action to be performed, the type which specifies the explicit type of

intent data, the component which specify the explicit name of the component to be used for the intent

and the extras which specify additional information to the component [1].

Some of the important actions that are used to share data between application components are

mentioned in the following table [Table 1].

Table 1: Intent actions used for communication

Action Name Description

ACTION_SENDTO This action is used to send data to a specific receiver.

ACTION_SEND_MULTIPLE This action is used to send multiple data to a any receiver.

ACTION_PICK This action is used to select an item from the data source.

ACTION_RUN This action is used to run the data.

2.1.1 Intent communicate with an activity
A single screen with a user interface in an Android mobile application represents an activity.

The startActivity(Intent intent) method is used to start a new activity with an Intent that describes the

activity to be started [Figure 3].

The startActivityForResult(Intent intent, int requestCode) method is used to receive the result from the

activity once if it is completed.

The first argument Intent describes the activity to be started and second argument int is a request code

which will be returned in onActivityResult() method once if the activity is completed. If the request

code is negative, it is similar to calling startActivity(Intent) method [Figure 3].

Kalaiselvi Arunachalam et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 10, October- 2015, pg. 48-58 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 51

Figure 3: Intent methods used for communication

The onActivityResult(int requestCode, int resultCode, Intent data) method is used to return the result

data along with the request code that was passed and the result code from the second activity which is

either RESULT_OK (-1) if successful or RESULT_CANCELED (0) if failed.

2.1.2 Intent communicate with a service
A component that runs in the background without a user interface in an Android mobile application

represents a service.

The startService(Intent service) method is used to start a service and the argument specifies the name

of the component or service to be started.

The stopService(Intent service) method is used to stop a service and the argument specifies the name of

the component or service to be stopped.

2.1.3 Intent communicate with a broadcast receiver
A broadcast message is received by applications and is delivered by the Android system based on the

system wide events. Also the custom broadcast messages can be delivered to other applications on the

device by passing the intent to the following methods [Figure 3].

The sendBroadcast(Intent intent) method is used to broadcast the intent to all broadcast receivers on

the device and the receivers cannot abort the broadcast message [Figure 3].

The sendOrderedBroadcast(Intent intent, String receiverPermission) method is used to broadcast the

intent to interested receivers one at a time [Figure 3].

The sendStickyBroadcast(Intent intent) method keeps the data within the system once if the broadcast

is completed (which was deprecated in API level 21).

3. iOS
The inter-application communication is achieved in iOS 7 using AirDrop and URL Scheme to share

data and files between iOS applications.

3.1 AirDrop
AirDrop is an exclusive and dedicated service which is available in Mac PCs and iOS based devices to

share data between them. AirDrop uses Wi-Fi and Bluetooth to transfer files between Mac PCs and

iOS devices by creating a peer-to-peer network [Figure 4]. Any kind of data like photo, video, music,

document, web page etc. are shared using AirDrop [2].

Kalaiselvi Arunachalam et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 10, October- 2015, pg. 48-58 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 52

Figure 4: Sharing content using AirDrop

3.1.1 Share data with other iOS applications using AirDrop
The standard view controller UIActivityViewController object provides various services like copying

items to the pasteboard, sharing content to social media websites, sending content by email etc.

The UIActivityViewController object is used by AirDrop to share data like photo, video, music, URL

etc. Based on the data object specification for sharing, the corresponding activities that support the data

are displayed in the view controller.

In order to receive data from AirDrop, the supported document types (like JPG, PNG, DOC, XLSX

etc.) by an application must be declared in the Xcode and the application:openURL:

sourceApplication:annotation: method must be implemented in the application delegate. The received

data or files are stored in the Documents/Inbox directory for user access and are read only. To modify

or update the content, then they must be moved out of this directory. AirDrop encrypt the files using

data protection and the transferred files cannot be opened unless the device is unlocked [2].

The application:openURL:sourceApplication:annotation: method is used to open data or files if the

application is in the foreground or it can be viewed later if the application is in the background.

3.2 URL scheme
Using the URL scheme, an iOS application communicate with another iOS application through URLs.

Many built-in URL schemes are available in iOS like mailto, sms, maps etc and the handlers for these

schemes cannot be updated. The custom URL schemes can be implemented by registering the URL

type with the system and the handler for the URL requests must be implemented [2].

3.2.1 Share data with other iOS applications using URL scheme
The iOS built-in URL schemes are accessed by calling the openURL method along with the formatted

data which launches that particular application and passes the URL to it.

To provide a custom URL scheme, an iOS application must register the corresponding URL scheme by

including the CFBundleURLTypes key in the information property list file (Info.plist) of the

application. The handler for the custom URL scheme must be implemented with the following methods

[Table 2]. The custom URL schemes are called by openURL method in the same way like built-in URL

scheme.

Kalaiselvi Arunachalam et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 10, October- 2015, pg. 48-58 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 53

Table 2: Handler for the custom URL scheme

Method Description

application:willFinishLaunchingWithOptions Retrieve information from the URL
application:didFinishLaunchingWithOptions Retrieve information from the URL
application:openURL:sourceApplication:annotation Open the file

If an iOS application is not running when a URL request comes, then it is launched and moved to the

foreground to open the URL. If an iOS application is running in the background or suspended when a

URL request comes, then it is moved to the foreground to open the URL [2].

4. Windows Phone
The inter-application communication is implemented in Windows Phone 8 operating system using File

and Protocol associations. These two associations automatically launch an application based on a

specific file or URI which is launched by another application [3].

4.1 File association
File association is used to launch an application automatically based on a request to open a particular

file type. By registering the file association in the Windows Phone application manifest file

(WMAppManifest.xml), any particular file type can be handled. Registering the file associations that

are reserved by built-in Windows Phone applications are ignored.

When the Windows Phone application is launched to handle a particular file type, a deep link URI is

sent to the application. The URI contains the FileTypeAssociation string which denotes a file

association and the fileToken parameter contains the file token [3]. While launching, the incoming deep

link URI is mapped to the application page that can handle the file. If there are multiple pages to handle

multiple files, then a custom URI mapper and the GetSharedFileName method are used to check the

file type before mapping the URI. The application calls the MapUri method of the URI mapper to

determine the target page to be launched. After receiving the fileToken from the deep link URI, files

are accessed using the following two methods [Table 3] of SharedStorageAccessManager class.

Table 3: Methods for retrieving a file

Method Description

GetSharedFileName Return name of the file with the extension
CopySharedFileAsync Copy the file to a specific location and return the copy

The LaunchFileAsync method is used to launch a file so that another Windows Phone Application can

open it [3].

4.2 Protocol (URI) association
A protocol or URI association is used to launch an application automatically based on a launch of an

URI from another application [3]. The URI scheme includes the URI scheme name and followed by the

colon with a list of parameters to be used in the URI association and based on which an application

responds to them. By registering the URI scheme in the application manifest file

(WMAppManifest.xml), the URI association is handled. Registering the URI scheme names that are

reserved by built-in Windows Phone applications are ignored.

When the Windows Phone application is launched to handle a particular URI association, a deep link

URI is sent to the application. The URI contains the Protocol string which denotes an URI association.

The encodedLaunchuri parameter contains the URI-encoded version of the URI scheme sent from the

originating application. A custom URI mapper is implemented to parse the deep link URI and map to a

page in the application which handle it like in file association. A Windows Phone application can

Kalaiselvi Arunachalam et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 10, October- 2015, pg. 48-58 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 54

launch automatically another application by launching a custom URI using the

Launcher.LaunchUriAsync(Uri) method [3] from the Launcher object of the Windows.System

namespace.

4.3 Effects of File and Protocol association
The effects of file and protocol association registered in the Windows Phone mobile operating system

are listed in the following table [Table 4].

Table 4: Effects of File and Protocol association in Windows Phone

Number of Applications Registered

(File and Protocol Association)
Effects

Only one application is registered Application is launched automatically

Multiple applications are registered
List of options provided to select one application among

them

No application is registered An option to select one from the Windows Store

5. BlackBerry OS
The inter-application communication is implemented in BlackBerry 10 mobile operating system using

the Invocation framework.

5.1 Invocation framework
The Invocation framework is used to invoke an application from another application through an

invocation request in Blackberry 10 OS. The built-in applications or core applications like file

manager, map, picture, calendar etc. are integrated to custom applications in BlackBerry mobile

operating system and invoked when required [4].

Figure 5: Apps sharing content using Invocation framework

Upon receiving the invocation request, the Invocation framework invokes an appropriate target

application to carry out an action [Figure 5]. A custom application is registered as a target with the

Invocation framework to be used by other applications. An invocation request is the message structure

that is passed between a client application and a target application [4].

 Invocation target: An application that is registered with the invocation framework as a target

which is invoked by other applications. The client application moves to the background while

the user works in the target application after the invocation request.

 Invocation action: An action with an unique name to be performed on content like

bb.action.OPEN.

 Invocation data: The data is provided as an URI that defines the location of the data and a

MIME type that describes the data.

5.1.1 Sending and receiving invocation
A custom BlackBerry application is configured to invoke target applications by using bound or

unbound invocations. In a bound invocation, the client application sends the invocation request to the

Kalaiselvi Arunachalam et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 10, October- 2015, pg. 48-58 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 55

framework by calling the target application directly. In an unbound invocation, the client application

sends the invocation request to the framework without specifying the target.

A custom application is registered as a target application with the invocation framework to receive the

invocation request from other applications. The target applications are discovered by the invocation

framework based on the filters like the type of invocation request that they support based on their

declaration in the bar-descriptor.xml file. When a client application queries the invocation framework,

the invocation framework returns the target applications which are grouped together by their actions.

Each target application is provided with the target ID, type etc. which are used to display the target

application in the client's screen [4].

6. Limitations of Inter-application communication
The inter-application communication is implemented in these mobile operating systems in different

ways. In Android 4.4, it is implemented to communicate and share data between application

components by intents using their in-built methods which are accessible within a device only [Table 5].

In iOS 7, the inter-app communication is implemented by passing URLs to communicate and share

data with other applications within a device using their in-built methods. Also inter-app communication

is implemented as an ad-hoc service in iOS with AirDrop and it shares data with other Mac and iOS

devices by using their in-built methods and through Wi-Fi or Bluetooth [Table 5]. In Windows Phone

8, the inter-application communication is implemented as an application launcher to start applications

based on a file or URI association launched by other applications within a device [Table 5]. In

BlackBerry 10, the inter-application communication is implemented as a framework which is used to

start other applications and to share data with them. This Invocation framework enables to integrate

core native applications in to a custom application that can be started when required [Table 5]. Even

though inter-application is implemented in these mobile operating systems, it is limited within a device

or within the same mobile operating system [Table 5] and the comparison is provided in the following

table.

Table 5: Limitations of Inter-application communication in mobile OSs

Features Android iOS Windows Phone BlackBerry

Version 4.4 7 8 10

Inter-App Communication

Mechanism

Intent AirDrop &

URL scheme

File & Protocol

Association

Invocation

Framework

Content Transfer (Text, Picture,

Video, Music)

Communication within a device

Communication across devices

(same mobile OS)

Communication across devices

(other mobile OS)

7. Proposed Approach
Based on the comparison of all these four mobile operating systems, the inter-application

communication is limited within the same mobile operating system or within a device only. As

growing number of mobile users around the world would create a great demand for inter-application

communication across devices with different mobile operating systems to communicate and share data

between them. A common mechanism or solution is required to handle it effectively.

Here is an approach in which an Application Controller that itself an application reside in each mobile

operating system. An Application Controller is a platform independent application that contains the

Kalaiselvi Arunachalam et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 10, October- 2015, pg. 48-58 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 56

details of all applications within a device and their status as well [Figure 6]. An Application Controller

provides these details to another Application Controller of another device. An application can

communicate and share data with another application on another mobile operating system through

these Application Controllers.

7.1 Architecture
The Application Controller implementation shall follow the same requirements/protocols independent

of these mobile operating systems.

 The Application Controllers shall communicate through shared network media like Wi-Fi

or Bluetooth.

 The Application Controllers are platform-independent and can be used in any of these

mobile operating systems.

Figure 6: Application Controller on a mobile phone

 If any application running on a device in order to communicate with other application on

another device, should first register itself with its native Application Controller.

 An Application Controller on a device is like an application interface manager containing

details of its native applications.

 If an application from a source device want to communicate with another application on a

target device with a different mobile operating system, then an Application Controller in

the source device communicate with an Application Controller on the target device which

provide the necessary details like the device id, application id, message format etc. These

information are shared through a message system like URLs. Then the source application

can select a specific application on the target device and share content with it. For

example, APP3 of Mobile OS-A can communicate with APP1 of Mobile OS-B to share

content with it through these Application Controllers [Figure 7].

Kalaiselvi Arunachalam et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 10, October- 2015, pg. 48-58 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 57

Figure 7: Inter-app communication across mobile OSs using Application Controller

 Any kind of data like URL, text, music, video etc. can be transferred between

applications across different mobile operating systems.

 An application can start or stop another application on another device through these

Application Controllers.

8. Conclusion
The existence of inter-application communication in various popular mobile operating systems that use

different mechanisms are discussed. These mechanisms are useful for the communication between

different applications within a device. The inter-application communication is limited across devices

that belong to the same mobile operating system. Also, the inter-application communication is

implemented within a device and very limited beyond it in these mobile operating systems. Since these

mobile operating systems are having their own limitations like ownership, data security, privacy,

uniqueness etc., they limit the inter-application communication with their operating system itself. But

the growing number of mobile consumers around the world would create a demand for inter-

application communication between different mobile operating systems to share data which is required

by the user. The inter-application communication between different mobile operating systems would

help the user to transfer data between their devices easily. A common mechanism can be used across

these mobile operating systems in order to share data and control applications as well. A platform

independent Application Controller would achieve inter-application communication across these

mobile operating systems. A detailed study of the mechanism about the Inter-app Application

Controller would be analyzed further.

References
[1] Android Developer Library - Interacting with Other Apps:

http://developer.android.com/training/basics/intents/index.html

[2] iOS Developer Library - Inter-App Communication:

https://developer.apple.com/library/prerelease/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingG

uide/Inter-AppCommunication/Inter-AppCommunication.html

[3] Windows Dev Centre - Auto-launching Apps:

 https://msdn.microsoft.com/en-us/library/windows/apps/jj206987(v=vs.105).aspx

Kalaiselvi Arunachalam et al, International Journal of Computer Science and Mobile Applications,

 Vol.3 Issue. 10, October- 2015, pg. 48-58 ISSN: 2321-8363

©2015, IJCSMA All Rights Reserved, www.ijcsma.com 58

[4] BlackBerry Developer - App Integration:

http://developer.blackberry.com/native/documentation/device_platform/invocation/index.html

[5] Brian Partridge, Harish Dhurvasula, 2014, Inter-application communication on mobile platforms, United

States Patent.

[6] Mona Erfani Joorabchi, Ali Mesbah, Philippe Kruchten, 2013, Real Challenges in Mobile App Development,

ACM/IEEE International Symposium on Empirical software Engineering and Measurement, pp. 15-24.

[7] Laszlo Csaba Benedek, Octavian Chincisan, Cristian Hancila, Anthony Russello, 2012, Cross-Environment

Communication Framework, United States Patent.

[8] Erika Chin, Adrienne Porter Felt, Kate Greenwood, David Wagner, 2011, Analyzing Inter-Application

Communication in Android, In Proceeding(s) of the 9th International conference on Mobile systems,

applications, and services (MobiSys), pp.239-252.

[9] Zheng Wang, David Hearnden, Andrew Foster, 2013, Data exchange between applications of an electronic

device, United States Patent.

[10] Kenny Fek, Jihyun HWang, Chi Chung Yip, Mikhail A. Lushin, 2012, Providing secure Inter-Application

communication for a mobile operating environment, United States Patent.

[11] Joshua D. Galicia, Jeffrey C. Carlyle, Andrew N. Tzakis, 2011, System and method for switching between

environments in a multi-environment operating system, United States Patent.

[12] Qingguo Lan, Shufen Liu, Lu Han, Ming Qu, 2004, Study and Realization of the Inter-Application

Communication Methods, In Proceeding(s) of the 8th International conference on Computer Supported

Cooperative Work in Design, 2, pp.124-127.

[13] Rangachari Anand, Stacy F. HOBSON, Juhnyoung Lee, Yuan Wang, Jing Min Xu, Jeaha Yang, Daha Az,

2014, Coordinating data sharing among applications in mobile devices, United States Patent.

[14] Shailendra Jain, Andrew Lunstad, 2010, System and method for mobile Smartphone application

development and delivery, United States Patent.

Kalaiselvi Arunachalam - She received the B.Sc. degree in Physics from the University of Madras, India and

M.C.A degree in Computer Applications from the Anna University, India. She is currently a Ph.D. scholar in the

Department of Computer Science, Bharathidasan University, India. Her research interests include Home

Networking, Communication Software and Systems.

Dr. Gopinath Ganapathy - He received the B.Sc. degree in Computer Science from the Bharathidasan

University, India, M.C.A degree in Computer Applications from the St. Joseph’s College Autonomous, India and

Ph.D from the Madurai Kamaraj University, India. He is currently the Chair and Head, School of Computer

Science Engineering and Applications, Bharathidasan University, India.

Dr. Gopinath Ganapathy is a professional member in IEEE, ACM, CSI, and ISTE. His research interests include

Semantic Web, NLP, Ontology, and Text Mining.

