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Abstract 

 
This paper takes the mathematical software Maple as the auxiliary tool to study the differential problem of two types of 
functions. We can obtain the Fourier series expansions of any order derivatives of these functions by using 
differentiation term by term theorem and Leibniz differential rule, and hence greatly reduce the difficulty of calculating 
their higher order derivative values. In addition, we provide two functions to evaluate their any order derivatives, and 
calculate some higher order derivative values practically. The research methods adopted in this study involved finding 
solutions through manual calculations and verifying these solutions by using Maple. This type of research method not only 
allows the discovery of calculation errors, but also helps modify the original directions of thinking from manual and Maple 
calculations. For this reason, Maple provides insights and guidance regarding problem-solving methods.  
 
Keywords: derivatives; Fourier series expansions; differentiation term by term theorem; Leibniz differential 
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1. Introduction 

The computer algebra system (CAS) has been widely employed in mathematical and scientific studies. The 
rapid computations and the visually appealing graphical interface of the program render creative research 
possible. Maple possesses significance among mathematical calculation systems and can be considered a 
leading tool in the CAS field. The superiority of Maple lies in its simple instructions and ease of use, which 
enable beginners to learn the operating techniques in a short period. In addition, through the numerical and 
symbolic computations performed by Maple, the logic of thinking can be converted into a series of instructions. 
The computation results of Maple can be used to modify our previous thinking directions, thereby forming 
direct and constructive feedback that can aid in improving understanding of problems and cultivating research 
interests. Inquiring through an online support system provided by Maple or browsing the Maple website 
(www.maplesoft.com) can facilitate further understanding of Maple and might provide unexpected insights. As 
for the instructions and operations of Maple, we can refer to [1]-[7]. 

In calculus courses, finding the n -th order derivative value )()( cf n  of a function )(xf  at cx = , in general, 

needs to go through two procedures: firstly evaluating the n -th order derivative )()( xf n of )(xf , and 

secondly taking cx =  into )()( xf n  . These two procedures will make us face with increasingly complex 

calculations when calculating higher order derivative values of a function (i.e. n  is large), Therefore, to obtain 
the answers by manual calculations is not easy. In this paper, we study the differential problems of the 
following two types of functions 

                                                           )]cos(ln[)( βλ ++= xcbexf ax                                                               (1) 

                                                            )]sin(ln[)( βλ ++= xcbexg ax                                                                (2) 
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where βλ,,,, cba  are real numbers, 0≠λ , cb > . We can obtain the Fourier series expansions of any order 

derivatives of these two types of functions by using differentiation term by term theorem and Leibniz 
differential rule, and hence greatly reduce the difficulty of evaluating their higher order derivatives values ; 
these are the major results of this paper (i.e., Theorems 1, 2). As for the study of related differential problems 
can refer to [8]-[21]. In addition, we propose two examples to do calculation practically. The research methods 
adopted in this study involved finding solutions through manual calculations and verifying these solutions by 
using Maple. This type of research method not only allows the discovery of calculation errors, but also helps 
modify the original directions of thinking from manual and Maple calculations. For this reason, Maple 
provides insights and guidance regarding problem-solving methods. 
 
2.  Main Results 
 
Firstly, we introduce a notation and two formulas used in this study. 

Notation. 

Let ibaz +=  be a complex number, where 1−=i , ba, are real numbers. We denote a  the real part of 
z  by )Re(z , and b  the imaginary part of z  by )Im( z . 

Formulas. 

(i) )1ln()(
1
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xx
k

k

k

+−=−∑
∞

=
, where 11 ≤<− x . 

(ii) geometric series. ∑
∞
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+ 0
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1

1

k

kk z
z

, where z  is a complex number, 1<z . 

Next, we introduce two important theorems used in this paper. 

Differentiation term by term theorem ([22]). 

If, for all non-negative integer k , the functions Rbagk →),(:  satisfy the following three conditions：(i) 

there exists a point ),(0 bax ∈ such that∑
∞

=0
0)(

k
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Leibniz differential rule ([23]). Let n  be a positive integer. If )(),( xgxf are functions such that their m -th 

derivatives )(),( )()( xgxf mm exist for all nm ,...,1= . Then the n -th derivative of product function )()( xgxf , 
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Before deriving our major results, we need a lemma. 
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Lemma A. Let βλ ,,,cb  be real numbers, 0≠λ , cb > .The Fourier series expansion of )]cos(ln[ βλ ++ xcb , 

)]cos(ln[ βλ ++ xcb )cos(
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(3) 

for all Rx ∈ . 

Proof.  Let )(
2

1
cbcbp −++= , )(

2

1
cbcbq −−+= ,then the derivative of  )]cos(ln[ βλ ++ xcb , 

)]cos(ln[ βλ ++ xcb
dx

d
 

)cos(

)sin(

βλ
βλλ

++
+−

=
xcb

xc
 

22 )cos(2

)sin(

qxpqp

xc

+++
+−=

βλ
βλλ

 

)(sin)cos(

)sin(

2
2

2

βλβλ

βλλ

++







++

+−

=

xx
q

p

q

xc

 

         





























+−++








++++









+−++

=
)sin()cos()sin()cos(

)sin()cos(

Im
2

βλβλβλβλ

βλβλλ

xix
q

p
xix

q

p

xix
q

p

q

c

 

                          



















+
⋅=

p

qzpq

c

1

1
Im

λ      (where )( βλ += xiez )                       























−= ∑

∞

=0

Im2
k

k

p

qzλ     (because 1<=−
p

q

p

qz
, we can use geometric series) 

                          )sin(2
1

kkx
p

q

k

k

βλλ +






 −= ∑
∞

=
                                                                                            (4) 

Therefore,  
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where K is a constant. 

Taking 
λ
β−=x  into both sides of (5), we obtain  

                                                        )ln( cb + K
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The following is the first major result in this study, we determine the Fourier series expansions of any order 
derivatives of function (1). 

Theorem 1. Suppose βλ,,,, cba  are real numbers, 0≠λ , cb > , n is any positive integer, and let the domain 

of )]cos(ln[)( βλ ++= xcbexf ax  be ),( ∞−∞ . The n -th order derivative of )( xf , 
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for all Rx ∈ . 

Proof.           )()( xf n  
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In Theorem 1, if replacing β by 
2

πβ − , then we immediately obtain the Fourier series expansions of any 

order derivatives of function (2). 

Theorem 2. If the assumptions are the same as Theorem 1, and the domain of )]sin(ln[)( βλ ++= xcbexg ax  

is ),( ∞−∞ . The n -th order derivative of )( xg ,   
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for all Rx ∈ . 
 
3. Examples 
 

Next, aimed at the differential problem of the two types of functions in this study, we provide two functions 
and use Theorems 1, 2 to determine the Fourier series expansions of their any order derivatives and evaluate 
some of their higher order derivative values practically. In addition, we use Maple to calculate the 
approximations of these higher order derivative values and their solutions for verifying our answers. 

Example 1. Suppose the domain of the function 

                                                             














 −−=
6

5
3cos45ln)( 2 π

xexf x                                                     (10) 

is ),( ∞−∞ . 
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Then by Theorem 1, we obtain the n -th order derivative of )( xf , 
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for all Rx ∈ . 

Therefore, we obtain the 12-th order derivative value of )( xf  at  
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In the following, we use Maple to verify the correctness of (12). 

>f:=x->exp(2*x)*ln(5-4*cos(3*x-5*Pi/6)); 

 
>evalf((D@@12)(f)(Pi/2),24); 

 

>evalf(-2*exp(Pi)*sum(12!/(m!*(12-m)!)*2^(12-m)*3^m*sum(k^(m-1)*(1/2)^k*cos(2*k*Pi/3+m*Pi/2),k=1 

..infinity),m=0..12)+2^13*ln(2)*exp(Pi),22); 

 
 

Example 2. Let the domain of the function 
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xexg x                                                     (13) 

be ),( ∞−∞ . 

By Theorem 2, we can evaluate the n -th order derivative of )( xg , 
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Using Maple to verify the correctness of (15) as follows: 

>g:=x->exp(-3*x)*ln(10+8*sin(4*x+2*Pi/3)); 

 
>evalf((D@@9)(g)(-5*Pi/6),24); 

 

>evalf(-2*exp(5*Pi/2)*sum(9!/(m!*(9-m)!)*(-3)^(9-m)*4^m*sum(k^(m-1)*(-1/2)^k*cos(5*k*Pi/6+m*Pi/2), 

k=1..infinity),m=0..9)+2*(-3)^9*ln(2*sqrt(2))*exp(5*Pi/2),24); 

 

The above answer obtained by Maple appears  I (1−= ), it is because Maple calculates by using special 
functions built in. The imaginary part is zero, so can be ignored. 

 
4. Conclusion  
 

As mentioned, the differentiation term by term theorem and the Leibniz differential rule play significant 
roles in the theoretical inferences of this study. In fact, the applications of these two theorems are extensive, 
and can be used to easily solve many difficult problems; we endeavor to conduct further studies on related 
applications. On the other hand, Maple also plays a vital assistive role in problem-solving, we can even use 
Maple to design some types of differential problems, and try to find the methods to solve them. In the future, 
we will extend the research topic to other calculus and engineering mathematics problems and solve these 
problems by using Maple. These results will be used as teaching materials for Maple on education and research 
to enhance the connotations of calculus and engineering mathematics.  
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