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Abstract 

Artificial Intelligence (AI) has emerged as a powerful tool in drug discovery and development, revolutionizing how 
new medicines are identified, optimized, and brought to market. Several drug discovery processes, including peptide 
synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and 
release, pharmacophore modeling, quantitative structure-activity relationship, drug repositioning, 
polypharmacology, and physiochemical activity, have leveraged AI to achieve their goals. This review provides an 
in-depth analysis of AI's various applications in the pharmaceutical industry, including virtual screening, molecular 
modeling, target identification, and drug repurposing. We discuss the challenges and opportunities associated with 
AI in drug discovery and its impact on the future of medicine. 
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1. Introduction

Drug development consists of four key phases: drug discovery, pre-clinical research, clinical development and 
market approval (Phase I focuses on evaluating pharmacokinetics, safety, and tolerability in healthy volunteers. 
Phase II involves testing efficacy and dose response in a small cohort group of patients with the target disease. Phase 
III comprises large-scale studies to verify safety and effectiveness.), and post-approval surveillance (Phase IV). The 
initial drug discovery stage involves identifying and creating new chemical compounds that target specific protein 
structures related to diseases and medical conditions. Drug design is vital in drug discovery, refining potential drug 
compounds through lead optimization [1].  

Introducing AI techniques in drug discovery and development processes shows potential for accelerating timelines 
and reducing costs [2]. The substantial financial and time investments required in bringing a new drug to market, 
with an estimated average price of 2.6 billion USD and a timeline exceeding ten years, illustrate the significance of 
streamlining drug development efforts. Additionally, the low success rate of new therapeutic agents reaching the 
market from Phase I clinical trials, estimated at less than 10%, highlights the challenges faced in this field [3-7]. The 
initial phase of the drug discovery process centers on identifying pertinent targets, such as specific genes and 
proteins linked to disease pathways, followed by the quest for suitable pharmaceutical compounds or drug analogs 
capable of interacting with these targets [8, 9]. The concept of big data pertains to vast datasets beyond the scope of 
conventional data analysis tools and techniques, owing to their substantial size, rapid data generation rates, and 
diverse data modalities. The abundance of large-scale biomedical data repositories is a valuable resource in 
facilitating these endeavors. Concurrently, the evolution of AI technologies has streamlined data analysis practices, 
enabling the application of various Machine Learning (ML) methodologies to explore, interpret, and discern 
essential insights, patterns, and relationships within extensive biomedical datasets [10].  Researchers can use ML, 
Deep Learning (DL), and other AI tools to pinpoint promising drug candidates, forecast their potential efficacy and 
safety profiles, and refine their molecular structures to amplify therapeutic potency [11]. 

ML algorithms push forward drug discovery, providing significant benefits to pharmaceutical companies. These 
algorithms have been instrumental in creating predictive models for evaluating chemical, biological, and physical 
properties of compounds in drug development [12-14]. ML algorithms are versatile tools that can be integrated into 
all stages of the drug discovery process. They have been utilized to uncover new applications for existing drugs, 
forecast interactions between drugs and proteins, assess drug efficacy, determine safety markers, and enhance the 
bioactivity of molecules [15-18]. Commonly used ML algorithms in drug discovery include Random Forest (RF), 
Naive Bayesian (NB), and Support Vector Machine (SVM) [19-21]. 

This review article provides a comprehensive overview of the critical applications of AI in drug discovery and 
development. We discuss the use of AI in virtual screening, which involves rapidly screening large compound 
libraries to identify potential drug candidates [5, 22-24]. We also explore how AI is being utilized in molecular 
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modeling to predict the binding affinity of drug candidates to their target proteins, as well as in target identification 
to identify novel therapeutic targets for specific diseases. Additionally, we examine the growing trend of drug 
repurposing, where AI is used to discover new indications for existing drugs. 

2. Artificial Intelligence Fundamentals
AI is a branch of computer science that focuses on developing machine systems capable of performing tasks that 
typically require human intelligence. AI systems are designed to learn from data, identify patterns, make decisions, 
and solve complex problems [25]. Various techniques and approaches are used in AI, such as ML, DL, Natural 
Language Processing (NLP), and computer vision [26, 27]. ML algorithms enable AI systems to improve their 
performance over time by learning from data without being explicitly programmed. DL, a subset of ML, uses neural 
networks to process large amounts of data and extract meaningful patterns [28]. It is important to note that ML 
algorithms are not uniform within AI. There are two primary categories of ML algorithms: supervised and 
unsupervised learning. Supervised learning involves training with labeled data to predict labels for new samples, 
while unsupervised learning identifies patterns in unlabeled data. Unsupervised learning often transforms the data 
into a lower-dimensional space to facilitate pattern recognition when working with high-dimensional data. This 
dimension reduction enhances efficiency and aids in the interpretation of patterns. Additionally, the fusion of 
supervised and unsupervised learning occurs in semi-supervised and reinforcement learning approaches, offering 
flexibility for diverse datasets. 

The success of ML algorithms in drug discovery heavily relies on the availability of vast quantities of high-quality 
data and well-defined training sets. This requirement is particularly crucial in precision medicine, where a 
meticulous understanding of various pan-omic data types (such as genomic, transcriptomic, and proteomic) is 
essential for tailoring effective personalized therapies. Characteristics such as known data and thorough training sets 
are vital for the development, refinement, and efficacy of ML algorithms supporting drug discovery in the modern 
era [28, 29]. The principles related to drug discovery and computer-assisted drug design methods can be found in the 
Computer-Assisted Drug Design [29, 30]. 

3. Virtual Screening for Drug Discovery
Drug discovery projects typically commence when there is a lack of effective drugs for a specific disease or when 
existing treatments exhibit limited efficacy or substantial side effects [31]. The initial phase involves formulating a 
hypothesis that manipulating a particular target, such as an enzyme or receptor, will result in therapeutic benefits for 
the disease. This process includes identifying and validating the target. Subsequently, rigorous assays are conducted 
to identify potential compounds (hits) and develop them into potential drug candidates (leads) through hit discovery, 
hit-to-lead transformation, and lead optimization stages. These candidates then undergo preclinical testing and 
clinical trials. Successful candidates can eventually be approved and marketed as medical treatments for the targeted 
disease in Figure 1. 
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Figure 1. Drug Discovery Process Pipeline. 

Since the 1980s, High-Throughput Screening (HTS) has been utilized to expedite the discovery of small-molecule 
drugs, enhancing efficiency by leveraging automation and large chemical libraries [32, 33]. HTS generates 
significant Structure-Activity Relationship (SAR) datasets, which enrich chemical databases like PubChem and 
ZINC [34, 35]. AI Virtual Screening (VS) involves computational methods to sift through these vast chemical 
libraries for potentially active compounds for further in vitro and in vivo testing, relying on knowledge of the target 
(structure-based VS) or known active molecules (ligand-based VS) [36]. This method aims to improve the speed of 
identification of active molecules based on the hypothesis that targeting a specific molecule can treat a disease, 
utilizing agonists and antagonists as major classes of drugs with different mechanisms of action. Agonists activate 
the target to evoke a biological response, while antagonists bind to the target to block this response [37]. 
Quantifying activity involves measuring affinity (or potency) and efficacy. Affinity reflects how strongly a molecule 
binds to a target, potency indicates the amount needed to elicit a specific effect, and efficacy describes the 
magnitude of the impact, such as inhibiting an enzyme by a particular percentage amount. 

An ideal drug candidate needs to have sufficient activity as a ligand and exhibit binding specificity to specific 
targets to avoid unexpected side effects [38]. High selectivity is desired to prevent binding to multiple targets [39]. 
A combination of criteria, including physicochemical, pharmacokinetic, and pharmacodynamic properties, must be 
considered for drug candidates. Other properties like the Synthetic Accessibility Score (SAS) and the Quantitative 
Estimation of Drug-likeness (QED) are also crucial during compound synthesis. Based on the molecular fragments 
involved, the SAS rating system indicates the complexity of synthesizing a molecule, ranging from 1 (easy) to 10 
(difficult). The QED is a measure, on a scale of 0 to 1, that predicts the likelihood that a molecule is a suitable drug 
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candidate. 

Drug discovery involves a multi-objective optimization with predictive models like Quantitative Structure-Activity 
Relationship (QSAR) modeling used to map molecular structure to property values. QSAR models can also be used 
in reverse to identify structural features for optimal properties and guide drug design from scratch, known as de 
novo drug design [40]. 

   Drug design goes beyond screening existing chemical libraries to explore the vast chemical space, comprising all 
potential small molecules [41, 42]. This space is estimated to be extensive and involves a continuous cycle of 
Design-Making-Testing-Analysis (DMTA) which includes iterative organic synthesis and property testing [43]. To 
effectively navigate this chemical space, quantitative drug design has been proposed since the late 1970s [44]. Drug 
design is centered on two main questions: whether molecular properties can be inferred from molecular structures 
and which structural characteristics are relevant for specific molecular properties. The former question forms the 
basis of VS, while QSAR models address the latter. Drug design can be seen as an extension of virtual screening, 
encompassing tasks such as predicting molecular properties and generating molecules, which are essential 
components of current AI-driven drug discovery processes [45]. 

4. Molecular Modeling for De Novo Drug Design
Calculating the affinity between a ligand and a biological target is crucial in drug discovery. Various virtual 
screening techniques can quickly classify millions of compounds as 'active' or 'inactive' for a specific target. 
Understanding the binding affinity and interaction strength between a ligand and target protein is a vital aspect of 
drug discovery, as it aids in identifying potential drug candidates. Computational methods for predicting binding 
affinity offer significant time and cost savings compared to traditional laboratory experiments [46]. In the initial 
stages of small molecule drug discovery, rational drug design targets specific proteins, with potential molecules 
chosen as hits based on their binding affinity. While numerous computational methods have been developed for 
predicting protein-ligand binding affinity, they often rely on simplifying assumptions that lead to inaccuracies and 
high false-positive rates in hit identification [47-52]. Additionally, docking scores for hit prioritization during virtual 
screening may provide unreliable information. Therefore, accurately predicting binding affinity and identifying 
target hits through structure-based methods remain challenging. Using ML approaches involves training models 
with experimental protein-ligand data to predict the binding affinity of new protein-ligand complexes. However, 
challenges persist in accurately representing protein-ligand interactions, accounting for protein flexibility, selecting 
appropriate descriptors, and dealing with the wide range of ligand affinity values [53]. Among ML models, the RF 
method has shown improved affinity prediction compared to other techniques, with models like RF-Score and 
SFCscoreRF being developed.  
DL models are gaining popularity for their high performance in various fields, including drug discovery and visual 
and speech recognition [54, 55]. Several DL methods have been proposed for predicting ligand affinity and 
designing new drugs. For example, DEELIG, a DL model by Ahmed et al. employs Convolutional Neural Networks 
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(CNN) to identify spatial relationships within data, using a 3D grid of atoms to represent protein-ligand complexes. 
Li et al. developed Deep Atom based on a CNN that extracts atom interaction features from the voxelized structure 
of protein-ligand complexes [56, 57]. 
Additionally, Jiménez et al. introduced KDEEP, which uses a CNN-based model utilizing 3D voxel representations 
of proteins and ligands [58]. Limbu et al. introduced a novel Hybrid Neural Network (HNN) DL model that includes 
the 'HNN-Lenovo' and 'HNN-affinity' methods [46]. These methods leverage distinct learning frameworks to 
enhance de novo drug design prediction accuracy. 

5. Target Identification for Drug Discovery

Modeling diseases and identifying targets are vital early stages in drug discovery, and they play a crucial role in 
determining the success of drug development. Target identification can be categorized into experimental, multi-
omic, and computational strategies. Combined, these methods can create innovative therapeutic ideas in preliminary 
target identification, leading to a deeper comprehension of intricate diseases [59]. 

5.1. Experimental Target Identification: 

Affinity-based biochemical methods: Small-molecule affinity probes stand out for their ability to
label proteins without leaving a trace when interacting with their ligands [60].

Comparative profiling: A widely used quantitative proteomics technique called Stable Isotope
Labeling by Amino Acids in Cell Culture (SILAC) utilizes stable isotope-labeled amino acids to
distinguish between cellular proteomes accurately [61]. Various studies across different cancer
types, such as hepatocellular carcinoma, multiple myeloma, endometrial cancer, and colorectal
cancer, have shown SILAC's effectiveness in identifying critical factors in disease development
[62-65].

Chemical/genetic screening: Chemical/genetic screening methods, like RNA interference (RNAi)
and CRISPR-Cas9 gene editing, have long fascinated biologists due to their specificity and
efficiency. CRISPR technology has significantly advanced our understanding of molecular and
pharmacological aspects of human diseases [66].

5.2.  Multiomic Target Identification: 

 Multiomic data offers researchers a comprehensive view of molecular information from various sources, 
encompassing both stable genomic data and dynamic expression and metabolic profiles across space and 

•
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time [67]. Genomics, the oldest and most established omics field, primarily focuses on genetic variations 
within the DNA sequence [68]. Through large-scale Genome-Wide Association Studies (GWAS) driven by 
advanced sequencing technologies, numerous links have been discovered between genetic variations and 
complex diseases or traits leading to groundbreaking therapeutic advancements like the development of 
cystic fibrosis modulator drugs targeting CFTR mutations and new treatments for inflammatory bowel 
disease that target the disease-related gene IL23A [69, 70]. Furthermore, recent meta-analyses of extensive 
GWAS data have unveiled previously unknown genetic loci associated with various diseases, creating 
opportunities for drug repurposing [71]. 

5.3. Computational Target Identification: 
Traditional experimental methods for identifying targets are time-consuming and resource-intensive,
prompting the exploration of computational techniques as efficient alternatives. Various approaches, such
as pharmacophore screening, reverse docking and structure similarity analysis predict potential biological
targets for small molecules based on factors like protein structure and compound chemical structure [72-
74]. In pharmaceutical research, DL techniques, including generative adversarial networks and recurrent
neural networks, have gained substantial traction due to their ability to process data and extract features
through multiple layers of nodes [75]. These advanced algorithms have found applications in small-
molecule design aging studies and predicting drug responses from gene expression data [76-78]. By
leveraging diverse data sources and text analysis, DL methods address pressing medical challenges,
including severe and unmet medical conditions.

Moreover, advanced language models are crucial in expedited biomedical text mining for discovering therapeutic 
targets. These models, like BioGPT by Microsoft and ChatPandaGPT by Insilico Medicine, use extensive training 
on vast text data to connect diseases, genes, and biological processes [79]. They facilitate the quick identification of 
disease mechanisms, potential drug targets, and biomarkers. While these language models excel at understanding 
complex scientific concepts and accelerating disease hypothesis generation, they may unknowingly perpetuate 
human biases and need more discernment to validate input data accuracy. Additionally, their reliance on published 
information might restrict their ability to uncover innovative targets. Therefore, it is recommended to acknowledge 
these model limitations and complement their use with other approaches to ensure the discovery of genuinely novel 
therapeutic targets. 
Using AI-generated synthetic data is beneficial for target identification in medical research. Synthetic data, created 
by AI algorithms to mimic real-world patterns, can help researchers explore a broader range of scenarios, especially 
in areas with limited experimental data like rare diseases. By generating synthetic data based on existing knowledge, 
AI can reveal potential therapeutic targets that may have been overlooked, aiding in the validation of predictions and 
addressing data imbalance issues [80-82]. However, it's essential to acknowledge the limitations of synthetic data, as 
models may not capture unknown complexities, and ethical concerns could arise from simulating under-represented 
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populations. Robust validation and quality control measures are crucial to ensuring the reliability and relevance of 
AI-generated synthetic data in biomedical research [83-85]. 

6. Drug Repurposing for Drug Discovery 
Drug repurposing, a feasible and promising approach, has garnered increasing interest from governments and 
pharmaceutical companies for its excellent track record in saving time and money. It involves identifying new 
medical uses for existing drugs initially developed for different purposes. This approach presents a quicker and more 
cost-efficient way to create new treatments [86, 87].  

Drug repurposing strategies can be categorized into drug-based and disease-based approaches. The familiar premise 
is that a drug may effectively treat multiple diseases with similarities or interconnections [88, 89]. Target 
associations can be complex due to the multifunctional nature of drugs, and computational drug repurposing faces 
challenges in distinguishing drug targets from other gene products indirectly involved in target activity [88]. 
Traditional methods may need more datasets and environmental variations, potentially leading to inaccuracies. Still, 
the growing biomedical and pharmaceutical data has improved computational approaches, such as data mining and 
ML, to repurpose drugs better [90, 91]. These advanced methods help uncover therapeutic opportunities by 
analyzing interactions among biological entities like genes, proteins, drugs, and diseases within complex networks. 
Some ML techniques for repurposing drugs include k-nearest neighbors, RF and SVM [92-94]. 

Various studies have used ML techniques like collaborative filtering to predict new drug-disease associations based 
on gene expression patterns [95, 96]. One study created drug similarity datasets to identify potential repurposed uses 
for FDA-approved drugs by analyzing known and unknown associations [97]. They used SVM classification and 
collaborative filtering to predict novel drug-disease links. Another study proposed a computational framework 
integrating different data sources to predict similarities between drugs, diseases, and drug-disease pairs [98]. They 
used strategies like block coordinate descent and causal inference-probabilistic matrix factorization to classify new 
drug-disease associations. These approaches help identify potential off-target drug interactions and discover new 
connections within the drug-disease network.  
Due to their ability to uncover intricate patterns, DL models are well-suited for analyzing complex data such as 
electronic health records, the entire proteome, and the human genome [99]. This makes them particularly applicable 
in life sciences fields like drug repurposing. DL stands out from traditional ML techniques for its neural network 
flexibility [100]. DL methods offer various advantages over conventional approaches, particularly their ability to 
automatically model and learn complex features, and have proven beneficial in identifying repurposed drugs. 
Nonetheless, several challenges persist, including the “black box phenomena” and opaque nature of DL models, a 
lack of interpretability, output reliance on input data, and the necessity of extensive standardized biochemical 
datasets to achieve optimal learning and performance outcomes. Despite the availability of vast amounts of data, the 
process of extracting and preparing standardized data for ML and DL applications remains a significant challenge. It 
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is hoped that the development of extensive datasets in the future will facilitate the establishment of standardized DL 
models for drug repurposing [101]. 

7. Conclusion 

In conclusion, AI has the potential to revolutionize the field of drug discovery and development, transforming the 
way medicines are discovered, optimized, and brought to market. By harnessing the power of ML and other AI 
technologies, researchers can accelerate the drug development process, reduce costs, and improve the success rates 
of new therapeutic interventions. As AI continues to evolve and mature, its integration into the pharmaceutical 
industry will be crucial in advancing personalized medicine and improving healthcare outcomes for patients 
worldwide.  
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